Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Computational Engineering

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared ...


Automatic Fracture Orientation Extraction From Sfm Point Clouds, Jon Kissi Oct 2016

Automatic Fracture Orientation Extraction From Sfm Point Clouds, Jon Kissi

Electronic Thesis and Dissertation Repository

Geology seeks to understand the history of the Earth and its surface processes through charac- terisation of surface formations and rock units. Chief among the geologists’ tools are rock unit orientation measurements, such as Strike, Dip and Dip Direction. These allow an understanding of both surface and sub-structure on both the local and macro scale.

Although the way these techniques can be used to characterise geology are well understood, the need to collect these measurements by hand adds time and expense to the work of the geologist, precludes spontaneity in field work, and coverage is limited to where the geologist ...


Fractal Analysis Of Dna Sequences, Christian G. Arias, Pedro Antonio Moreno Phd, Carlos Tellez Oct 2016

Fractal Analysis Of Dna Sequences, Christian G. Arias, Pedro Antonio Moreno Phd, Carlos Tellez

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood Aug 2016

Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood

Doctoral Dissertations

An estimate of the United States wind potential conducted in 2011 found that the energy available at an altitude of 80 meters is approximately triple the wind energy available 50 meters above ground. In 2012, 43% of all new electricity generation installed in the U.S. (13.1 GW) came from wind power. The majority of this power, 79%, comes from large utility scale turbines that are being manufactured at unprecedented sizes. Existing wind plants operate with a capacity factor of only approximately 30%. Measurements have shown that the turbulent wake of a turbine persists for many rotor diameters, inducing ...


Energy Consumption Prediction With Big Data: Balancing Prediction Accuracy And Computational Resources, Katarina Grolinger, Miriam Am Capretz, Luke Seewald Jun 2016

Energy Consumption Prediction With Big Data: Balancing Prediction Accuracy And Computational Resources, Katarina Grolinger, Miriam Am Capretz, Luke Seewald

Electrical and Computer Engineering Publications

In recent years, advances in sensor technologies and expansion of smart meters have resulted in massive growth of energy data sets. These Big Data have created new opportunities for energy prediction, but at the same time, they impose new challenges for traditional technologies. On the other hand, new approaches for handling and processing these Big Data have emerged, such as MapReduce, Spark, Storm, and Oxdata H2O. This paper explores how findings from machine learning with Big Data can benefit energy consumption prediction. An approach based on local learning with support vector regression (SVR) is presented. Although local learning itself is ...


Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski Jan 2016

Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski

Wojciech Budzianowski

-


Inżynieria Chemiczna Lab., Wojciech M. Budzianowski Jan 2016

Inżynieria Chemiczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

-


Full Matrix Capture And The Total Focusing Imaging Algorithm Using Laser Induced Ultrasonic Phased Arrays, Theodosia Stratoudaki, Matt Clark, Paul D. Wilcox Jan 2016

Full Matrix Capture And The Total Focusing Imaging Algorithm Using Laser Induced Ultrasonic Phased Arrays, Theodosia Stratoudaki, Matt Clark, Paul D. Wilcox

Review of Progress in Quantitative Nondestructive Evaluation

Laser ultrasonics is a technique where lasers are used for the generation and detection of ultrasound instead of conventional piezoelectric transducers. The technique is broadband, non-contact, and couplant free, suitable for large stand-off distances, inspection of components of complex geometries and hazardous environments. In this paper, array imaging is presented by obtaining the full matrix of all possible laser generation, laser detection combinations in the array (Full Matrix Capture), at the nondestructive, thermoelastic regime. An advanced imaging technique developed for conventional ultrasonic transducers, the Total Focusing Method (TFM) [2], is adapted for laser ultrasonics and then applied to the captured ...