Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computational Engineering

Fogfly: A Traffic Light Optimization Solution Based On Fog Computing, Quang Tran Minh, Chanh Minh Tran, Tuan An Le, Binh Thai Nguyen, Triet Minh Tran, Rajesh Krishna Balan Oct 2018

Fogfly: A Traffic Light Optimization Solution Based On Fog Computing, Quang Tran Minh, Chanh Minh Tran, Tuan An Le, Binh Thai Nguyen, Triet Minh Tran, Rajesh Krishna Balan

Research Collection School Of Information Systems

This paper provides a fog-based approach to solving the traffic light optimization problem which utilizes the Adaptive Traffic Signal Control (ATSC) model. ATSC systems demand the ability to strictly reflect real-time traffic state. The proposed fog computing framework, namely FogFly, aligns with this requirement by its natures in location-awareness, low latency and affordability to the changes in traffic conditions. As traffic data is updated timely and processed at fog nodes deployed close to data sources (i.e., vehicles at intersections) traffic light cycles can be optimized efficiently while virtualized resources available at network edges are efficiently utilized. Evaluation results show ...


Aspect Extraction From Product Reviews Using Category Hierarchy Information, Yifeng Yang, Chen Cen, Minghui Qiu, Forrest Sheng Bao Apr 2017

Aspect Extraction From Product Reviews Using Category Hierarchy Information, Yifeng Yang, Chen Cen, Minghui Qiu, Forrest Sheng Bao

Research Collection School Of Information Systems

Aspect extraction is a task to abstract the common properties of objects from corpora discussing them, such as reviews of products. Recent work on aspect extraction is leveraging the hierarchical relationship between products and their categories. However, such effort focuses on the aspects of child categories but ignores those from parent categories. Hence, we propose an LDA-based generative topic model inducing the two-layer categorical information (CAT-LDA), to balance the aspects of both a parent category and its child categories. Our hypothesis is that child categories inherit aspects from parent categories, controlled by the hierarchy between them. Experimental results on 5 ...


Understanding The Paradigm Shift To Computational Social Science In The Presence Of Big Data, Ray M. Chang, Robert J. Kauffman, Young Ok Kwon Jul 2014

Understanding The Paradigm Shift To Computational Social Science In The Presence Of Big Data, Ray M. Chang, Robert J. Kauffman, Young Ok Kwon

Research Collection School Of Information Systems

The era of big data has created new opportunities for researchers to achieve high relevance and impact amid changes and transformations in how we study social science phenomena. With the emergence of new data collection technologies, advanced data mining and analytics support, there seems to be fundamental changes that are occurring with the research questions we can ask, and the research methods we can apply. The contexts include social networks and blogs, political discourse, corporate announcements, digital journalism, mobile telephony, home entertainment, online gaming, financial services, online shopping, social advertising, and social commerce. The changing costs of data collection and ...