Open Access. Powered by Scholars. Published by Universities.®

Astrodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 128

Full-Text Articles in Astrodynamics

Visualization And Machine Learning Techniques For Nasa’S Em-1 Big Data Problem, Antonio P. Garza Iii, Jose Quinonez, Misael Santana, Nibhrat Lohia May 2019

Visualization And Machine Learning Techniques For Nasa’S Em-1 Big Data Problem, Antonio P. Garza Iii, Jose Quinonez, Misael Santana, Nibhrat Lohia

SMU Data Science Review

In this paper, we help NASA solve three Exploration Mission-1 (EM-1) challenges: data storage, computation time, and visualization of complex data. NASA is studying one year of trajectory data to determine available launch opportunities (about 90TBs of data). We improve data storage by introducing a cloud-based solution that provides elasticity and server upgrades. This migration will save $120k in infrastructure costs every four years, and potentially avoid schedule slips. Additionally, it increases computational efficiency by 125%. We further enhance computation via machine learning techniques that use the classic orbital elements to predict valid trajectories. Our machine learning model decreases trajectory ...


System Architecture Design And Development For A Reusable Lunar Lander, Chad Batten, Camille E. Bergin, Aaron Crigger, Darryl Harris, Gillian Suzanne Mcglothin May 2019

System Architecture Design And Development For A Reusable Lunar Lander, Chad Batten, Camille E. Bergin, Aaron Crigger, Darryl Harris, Gillian Suzanne Mcglothin

Chancellor’s Honors Program Projects

No abstract provided.


Satellite Conjunction Assessment Risk Analysis For “Dilution Region” Events: Issues And Operational Approaches, Matthew D. Hejduk Feb 2019

Satellite Conjunction Assessment Risk Analysis For “Dilution Region” Events: Issues And Operational Approaches, Matthew D. Hejduk

Space Traffic Management Conference

An important activity within Space Traffic Management is the detection and prevention of possible on-orbit collisions between space objects. The principal parameter for assessing collision likelihood is the probability of collision, which is widely accepted among conjunction assessment practitioners; but it possesses a known deficiency in that it can produce a false sense of safety when the orbital position uncertainties for the conjuncting objects are high. The probability of collision is said to be “diluted” in such a situation and to understate the possible risk; certain approaches have been recommended by researchers to provide (largely conservative) risk estimates and remediation ...


Space Objects Classification And Characterization Via Deep Learning And Light Curves: Applications To Space Traffic Management, Roberto Furfaro, Richard Linares, Vishnu Reddy Feb 2019

Space Objects Classification And Characterization Via Deep Learning And Light Curves: Applications To Space Traffic Management, Roberto Furfaro, Richard Linares, Vishnu Reddy

Space Traffic Management Conference

Recent advancements in deep learning (e.g. Convolutional Neural Networks (CNN), Recurrent Neural networks (RNN)) have demonstrated impressive results in many practical and theoretical fields (e.g. speech recognition, computer vision, robotics). Whereas deep learning methods are becoming ubiquitous, they have been barely explored in SSA applications, in particular with regard to object characterization for Space Traffic Management (STM).

In this paper, we report the results obtained in designing and training a set of CNNs and RNNs for Space Object (SO) classification and characterization using light-curve measurements. More specifically, we provide a comparison between deep networks trained on both physically-based ...


Near Real Time Satellite Event Detection And Characterization With Remote Photoacoustic Signatures, Justin Spurbeck, Moriba K. Jah Feb 2019

Near Real Time Satellite Event Detection And Characterization With Remote Photoacoustic Signatures, Justin Spurbeck, Moriba K. Jah

Space Traffic Management Conference

Active satellites frequently maneuver to mitigate conjunctions and maintain nominal mission orbits. With an ever-growing Resident Space Object (RSO) population, the need to detect and predict any changes in active RSO trajectories has become increasingly important. There is typically a lag on the order of hours to days from time of maneuver to unmodeled dynamic event detection depending on the magnitude of the delta-v. For uncooperative objects, this detection lag poses a threat to other satellites. Implementing an active photoacoustic signature change detection methodology to detect and predict unmodeled dynamic events would reduce the overall conjunction risk and provide a ...


Educating The Space Scientists At Embry-Riddle Through Design, Build And Fly Rocketry Experience, Pedro Llanos, Robert E. Haley, Sathya Gangadharan Jan 2019

Educating The Space Scientists At Embry-Riddle Through Design, Build And Fly Rocketry Experience, Pedro Llanos, Robert E. Haley, Sathya Gangadharan

Pedro J. Llanos (www.AstronauticsLlanos.com)

Practical experience for students in rockets and payloads is very valuable in the space industry, and it is something that would give them an advantage over other applicants. Students in Embry-Riddle Aeronautical University’s Payload and Integration class were given the opportunity to build a level 1 rocket and gain experience developing, testing, and integrating payloads into a rocket. The students were given the tasks to come up with an idea for a payload, design the payload to fit within the rocket for flight, and assemble and launch the rocket with the payload in the payload bay. The tasks required ...


Design Of An Attitude Control System For A Spacecraft With Propellant Slosh Dynamics, Nolan Coulter Dec 2018

Design Of An Attitude Control System For A Spacecraft With Propellant Slosh Dynamics, Nolan Coulter

Dissertations and Theses

The presence of propellant slosh dynamics in a spacecraft system during a maneuver leads to attitude control system (ACS) performance degradation resulting in attitude tracking errors and instability. As spacecraft missions become more complex and involve longer durations, a substantial propellant mass is required to achieve the mission objectives and perform orbital maneuvers. When the propellant tanks are only partially filled, the liquid fuel moves inside the tanks with translational and rotational accelerations generating the slosh dynamics. This research effort performs a comparative study with different optimal control techniques and a novel application of a model reference artificial immune system ...


Generating Exploration Mission-3 Trajectories To A 9:2 Nrho Using Machine Learning, Esteban Guzman Dec 2018

Generating Exploration Mission-3 Trajectories To A 9:2 Nrho Using Machine Learning, Esteban Guzman

Master's Theses and Project Reports

The purpose of this thesis is to design a machine learning algorithm platform that provides expanded knowledge of mission availability through a launch season by improving trajectory resolution and introducing launch mission forecasting. The specific scenario addressed in this paper is one in which data is provided for four deterministic translational maneuvers through a mission to a Near Rectilinear Halo Orbit (NRHO) with a 9:2 synodic frequency. Current launch availability knowledge under NASA’s Orion Orbit Performance Team is established by altering optimization variables associated to given reference launch epochs. This current method can be an abstract task and ...


Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly Nov 2018

Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly

Faculty Publications

In recent years, as a result of significant climate change, stringent windstorms are becoming more frequent than before. Given the threat that windstorms bring to people and property, wind/structural engineering research is imperative to improve the resilience of existing and new infrastructure, for community safety and assets protection. The Windstorm Impact, Science and Engineering (WISE) research program at Louisiana State University (LSU) focuses on creating new knowledge applicable to the mitigation of existing and new infrastructure, to survive and perform optimally under natural hazards. To achieve our research goals, we address two imperious challenges: (i) characterization of realistic wind ...


Julia Language Ephemeris And Physical Constants Reader For Solar System Bodies, Julia Mihaylov, Renee Spear Oct 2018

Julia Language Ephemeris And Physical Constants Reader For Solar System Bodies, Julia Mihaylov, Renee Spear

Undergraduate Research Symposium - Prescott

This presentation was the forerunner a second paper by the authors for the AAS/AIAA conference in January 2019, and is not available for download. For a description of the first presentation, see the authors' Discovery Day 2018 - Presentation.

Publicly released in 2012, the Julia language is a relatively new, open source dynamic language. One major benefit of Julia is its combined capabilities of both dynamic and static coding languages. It nearly matches the computational efficiency of static languages, such as FORTRAN or C, and exceeds that of dynamic languages, such as MATLAB or Python. Additionally, unlike Python, Julia was ...


Thermal Vacuum Chamber Refurbishment And Analysis, Adrian Michael Williams Jun 2018

Thermal Vacuum Chamber Refurbishment And Analysis, Adrian Michael Williams

Master's Theses and Project Reports

Spacecraft are subject to different environments while on orbit around the Earth and beyond. One of the most critical of these environments that must be counteracted is the thermal environment. Each spacecraft has an operating temperature that is specified in the mission requirements. The requirement stems from internal component operating temperatures that are critical to mission success. Prior to placing the spacecraft in orbit, engineers must be sure that the spacecraft will survive or risk losing the mission entirely.

The primary way to mitigate this risk is to use a thermal vacuum chamber (TVAC). The chamber is designed to resemble ...


Exploring The Concept Of A Deep Space Solar-Powered Small Spacecraft, Kian Guillaume Crowley Jun 2018

Exploring The Concept Of A Deep Space Solar-Powered Small Spacecraft, Kian Guillaume Crowley

Master's Theses and Project Reports

New Horizons, Voyager 1 & 2, and Pioneer 10 & 11 are the only spacecraft to ever venture past Pluto and provide information about space at those large distances. These spacecraft were very expensive and primarily designed to study planets during gravitational assist maneuvers. They were not designed to explore space past Pluto and their study of this environment is at best a secondary mission. These spacecraft rely on radioisotope thermoelectric generators (RTGs) to provide power, an expensive yet necessary approach to generating sufficient power. With Cubesats graduating to interplanetary capabilities, such as the Mars-bound MarCO spacecraft, matching the modest payload requirements ...


Use Of Manifolds In The Insertion Of Ballistic Cycler Trajectories, Oliver K. Morrison Jun 2018

Use Of Manifolds In The Insertion Of Ballistic Cycler Trajectories, Oliver K. Morrison

Master's Theses and Project Reports

Today, Mars is one of the most interesting and important destinations for humankind and copious methods have been proposed to accomplish these future missions. One of the more fascinating methods is the Earth-Mars cycler trajectory which is a trajectory that accomplishes repeat access to Earth and Mars with little to no fuel-burning maneuvers. This would allow fast travel to and from Mars, as well as grant the possibility of multiple missions using the same main vehicle.

Insertion from Earth-orbit onto the cycler trajectory has not been thoroughly ex- plored and the only existing method so far is a Hohmann-esque transfer ...


Interplanetary Transfer Trajectories Using The Invariant Manifolds Of Halo Orbits, Megan S. Rund Jun 2018

Interplanetary Transfer Trajectories Using The Invariant Manifolds Of Halo Orbits, Megan S. Rund

Master's Theses and Project Reports

Throughout the history of interplanetary space travel, the Newtonian dynamics of the two-body problem have been used to design orbital trajectories to traverse the solar system. That is, that a spacecraft orbits only one large celestial body at a time. These dynamics have produced impressive interplanetary trajectories utilizing numerous gravity assists, such as those of Voyager, Cassini, Rosetta and countless others. But these missions required large amounts of delta-v for their maneuvers and therefore large amounts of fuel mass. As we desire to travel farther and more extensively in space, these two-body dynamics lead to impossibly high delta-v values, and ...


Orbital Constellation Design And Analysis Using Spherical Trigonometry And Genetic Algorithms: A Mission Level Design Tool For Single Point Coverage On Any Planet, Joseph R. Gagliano Jun 2018

Orbital Constellation Design And Analysis Using Spherical Trigonometry And Genetic Algorithms: A Mission Level Design Tool For Single Point Coverage On Any Planet, Joseph R. Gagliano

Master's Theses and Project Reports

Recent interest surrounding large scale satellite constellations has increased analysis efforts to create the most efficient designs. Multiple studies have successfully optimized constellation patterns using equations of motion propagation methods and genetic algorithms to arrive at optimal solutions. However, these approaches are computationally expensive for large scale constellations, making them impractical for quick iterative design analysis. Therefore, a minimalist algorithm and efficient computational method could be used to improve solution times. This thesis will provide a tool for single target constellation optimization using spherical trigonometry propagation, and an evolutionary genetic algorithm based on a multi-objective optimization function. Each constellation will ...


Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson May 2018

Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson

Pedro J. Llanos (www.AstronauticsLlanos.com)

This study was conducted to better understand the performance of the XCOR Lynx vehicle. Because the Lynx development was halted, the best knowledge of vehicle dynamics can only be found through simulator flights. X-Plane 10 was chosen for its robust applications and accurate portrayal of dynamics on a vehicle in flight. The Suborbital Space Flight Simulator (SSFS) and Mission Control Center (MCC) were brought to the Applied Aviation Sciences department in fall 2015 at Embry-Riddle Aeronautical University, Daytona Beach campus. This academic and research tool is a department asset capable of providing multiple fields of data about suborbital simulated flights ...


Parameter Study Of An Orbital Debris Defender Using Two Team, Three Player Differential Game Theory, David F. Spendel Mar 2018

Parameter Study Of An Orbital Debris Defender Using Two Team, Three Player Differential Game Theory, David F. Spendel

Theses and Dissertations

The United States Air Force and other national agencies rely on numerous space assets to project their doctrine. However, space is becoming an increasingly congested, contested, and competitive environment. A common risk mitigation strategy for the orbit debris problem is either performing evasive maneuvers, or placing additional shielding on the satellite before launch. Current risk mitigation strategies have significant consequences to satellite operators and may not produce sufficient risk mitigation. This research poses that an orbital debris defender, which would defend the primary satellite from orbital debris, may be a more effective risk mitigation strategy. By assuming the worst case ...


Human Optimization And Performance Enhancement In Flight Via Real-Time Biofeedback (Project Have Hope), Michael S. Fritts Mar 2018

Human Optimization And Performance Enhancement In Flight Via Real-Time Biofeedback (Project Have Hope), Michael S. Fritts

Theses and Dissertations

A four-phase, chronological, and build-up approach was implemented that commenced with basic hardware testing in a centrifuge and culminated in flights augmented by real-time biofeedback displays. A prototype Portable Electrocardiogram Unit (PECGU) was designed and proven to accurately measure heart rate (HR) and display percent heart rate reserve (%HRR). Results showed that %HRR was not a sole predictor of cognitive state. Cognitive responses indicated some correlation with %HRR, but were influenced by environment (centrifuge vs. flight). Subjective perceived exertion levels did not show statistically significant changes during test with biofeedback. A G-tracking task was evaluated during centrifuge and flight tests ...


Algorithms For Small Satellite Formation Flying, Robert B. Larue Mar 2018

Algorithms For Small Satellite Formation Flying, Robert B. Larue

Theses and Dissertations

This thesis presents algorithms for spacecraft formation flying using impulsive thrust and low-thrust methods. The general circular orbit formation initial conditions are derived in terms of equinoctial elements. Physical significance of the bounded relative motion parameters is presented for the case of general circular orbits. The developed algorithms are posed in terms of equinoctial elements for a singularity-free approach. The algorithms are assessed by numerical propagation of the inertial equations of motion with J2 and drag perturbations. Methods are presented for minimizing the ΔV required for formation initialization. An examination of the performance of open-loop and closed-loop control is provided ...


The Study And Application Of Carbon Nanotube Film Heaters For Space Applications, Christopher C. Rocker Mar 2018

The Study And Application Of Carbon Nanotube Film Heaters For Space Applications, Christopher C. Rocker

Theses and Dissertations

The purpose of this research was to examine the feasibility of using Carbon Nanotube (CNT) sheets as thin film heaters for space applications. The ability to maintain the temperature of space components has a direct impact on a space vehicle's operation and longevity. Currently etched foil heaters are used to heat satellite batteries. Battery heaters are the focus of this research. However, as this study will show, they have limitations and are susceptible to failure. CNT sheets have many beneficial properties and show potential in replacing the etched foil design. In this study test specimens were created by forming ...


Optimal Trajectory Generation In A Dynamic Multi-Body Environment Using A Pseudospectral Method, Jacob A. Dahlke Mar 2018

Optimal Trajectory Generation In A Dynamic Multi-Body Environment Using A Pseudospectral Method, Jacob A. Dahlke

Theses and Dissertations

High-altitude parking orbits could provide resiliency to the military space infrastructure by providing redundancy in key assets, allowing for rapid reconstitution of underperforming satellites. When analyzing trajectories in a high-altitude regime, two-body models of Keplerian motion become less accurate since the gravitational effects of other bodies are no longer negligible. To provide a higher fidelity model of the dynamics in a high-altitude regime, a multiple-body model can be used. In the Earth-Moon system, a spacecraft operating in the high-altitude regime can be modeled with three-body dynamics. With certain simplifying assumptions, the model is called the circular-restricted three-body problem (CR3BP). The ...


Space-Based Maneuver Detection And Characterization Using Multiple Model Adaptive Estimation, Justin D. Katzovitz Mar 2018

Space-Based Maneuver Detection And Characterization Using Multiple Model Adaptive Estimation, Justin D. Katzovitz

Theses and Dissertations

An increasingly congested space environment requires real-time and dynamic space situational awareness (SSA) on both domestic and foreign space objects in Earth orbits. Current statistical orbit determination (SOD) techniques are able to estimate and track trajectories for cooperative spacecraft. However, a non-cooperative spacecraft performing unknown maneuvers at unknown times can lead to unexpected changes in the underlying dynamics of classical filtering techniques. Adaptive estimation techniques can be utilized to build a bank of recursive estimators with different hypotheses on a system's dynamics. The current study assesses the use of a multiple model adaptive estimation (MMAE) technique for detecting and ...


Responsible Behavior For Constellations And Clusters, Darren Mcknight, Jonathan Rosenblatt, Darren Garber Jan 2018

Responsible Behavior For Constellations And Clusters, Darren Mcknight, Jonathan Rosenblatt, Darren Garber

Space Traffic Management Conference

Many large constellations are being considered for deployment over the next ten years into low earth orbit (LEO). This paper seeks to quantify the risks that these constellations pose to the debris environment, the risks that the debris environment poses to these constellations, and the risks that these constellations pose to themselves. The three representative constellations examined in detail in this paper are operated (or planned to be operated) by Spire Global, Iridium, and OneWeb. This paper provides a balanced risk analysis including collision risk, operational risk, and non-adherence risk. For perspective, the risk posed by these economically useful constellations ...


Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson Jan 2018

Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson

Journal of Aviation/Aerospace Education & Research

This study was conducted to better understand the performance of the XCOR Lynx vehicle. Because the Lynx development was halted, the best knowledge of vehicle dynamics can only be found through simulator flights. X-Plane 10 was chosen for its robust applications and accurate portrayal of dynamics on a vehicle in flight. The Suborbital Space Flight Simulator (SSFS) and Mission Control Center (MCC) were brought to the Applied Aviation Sciences department in fall 2015 at Embry-Riddle Aeronautical University, Daytona Beach campus. This academic and research tool is a department asset capable of providing multiple fields of data about suborbital simulated flights ...


Natural And Artificial Satellite Dynamics And Evolution Around Near-Earth Asteroids With Solar Radiation Pressure, Samantha M. Rieger Jan 2018

Natural And Artificial Satellite Dynamics And Evolution Around Near-Earth Asteroids With Solar Radiation Pressure, Samantha M. Rieger

Aerospace Engineering Sciences Graduate Theses & Dissertations

Natural and artificial satellites are subject to perturbations when orbiting near-Earth asteroids. These perturbations include non-uniform gravity from the asteroid, third-body disturbances from the Sun, and solar radiation pressure. For small natural (1 cm-15 m) and artificial satellites, solar radiation pressure is the primary perturbation that will cause their orbits to go unstable. For the asteroid Bennu, the future target of the spacecraft OSIRIS-REx, the possibility of natural satellites having stable orbits around the asteroid and characterize these stable regions is investigated. It has been found that the main orbital phenomena responsible for the stability or instability of these possible ...


On The Design Of Solar Gravity Driven Planetocentric Transfers Using Artificial Neural Networks, Stijn De Smet Jan 2018

On The Design Of Solar Gravity Driven Planetocentric Transfers Using Artificial Neural Networks, Stijn De Smet

Aerospace Engineering Sciences Graduate Theses & Dissertations

The sun's gravity can be used to efficiently transfer between different planetocentric orbits. Such transfers cannot be designed in a two-body dynamical system, nor do analytical methods exist to identify such transfers. This dissertation presents a method to efficiently identify transfers between a specified departure and target orbit. This method is applied to a well known problem: transfers from inclined low-earth orbits to the geostationary orbit.

Motivated by the large observed control authority of the sun for geocentric transfers, a new mission architecture is defined. This architecture allows the injection of multiple spacecraft around Mars in different target orbits ...


Dynamics Of Complex Spacecraft Subject To Forced And Environmental Charging, Joseph A. Hughes Jan 2018

Dynamics Of Complex Spacecraft Subject To Forced And Environmental Charging, Joseph A. Hughes

Aerospace Engineering Sciences Graduate Theses & Dissertations

Due to the space plasma environment and the sun, spacecraft can charge to very high negative voltages. These high charge levels can cause arcing which can seriously damage spacecraft electronics and even cause mission ending damage. Spacecraft charging can also cause significant perturbations for lightweight High Area to Mass Ratio (HAMR) objects. If correctly harnessed and directed, charging can be used to exert forces and torques on large debris objects without making physical contact through the Coulomb force. This concept is called the Electrostatic Tractor (ET) and can tug debris out of Geosynchronous Earth orbit (GEO) in a matter of ...


Solar Eclipse Induced Atmospheric Turbulence Effects On High Altitude Balloons, Fnu Anamika, Denise Buckner, Peter Henson, Jennifer Fowler, Nanette Valentour Oct 2017

Solar Eclipse Induced Atmospheric Turbulence Effects On High Altitude Balloons, Fnu Anamika, Denise Buckner, Peter Henson, Jennifer Fowler, Nanette Valentour

2017 Academic High Altitude Conference

The North Dakota Atmospheric Education Student Initiated Research (ND-AESIR) team launched a balloon during the total solar eclipse in Rexburg, Idaho. After the umbra’s passage, the balloon experienced unexpectedly high levels of atmospheric turbulence. Video footage taken from the payload displays the conditions, and analysis of flight path data models created from the iridium GPS confirm that unusually violent turbulence occurred. These forces caused the key rings holding the bottom of the parachute to the payload train to rip open; the balloon and parachute flew away and the payloads free fell to the surface from an altitude of 68 ...


Integrating Spaceshiptwo Into The National Airspace System, Erik Seedhouse, Pedro Llanos Aug 2017

Integrating Spaceshiptwo Into The National Airspace System, Erik Seedhouse, Pedro Llanos

Pedro J. Llanos (www.AstronauticsLlanos.com)

The increasing number of commercial suborbital space flights over the next decade may lead to the development of commercial suborbital transportation. This may lead to risks to civil aviation and the hazards that may arise from the interaction of suborbital spacecraft with controlled air space. To do this the National Airspace System will need to accommodate a growing number of suborbital spacecraft. An example of one of the suborbital vehicles being developed is Virgin Galactic’s SpaceShipTwo. This paper analyzes the performance of SpaceShipTwo using simulated nominal flight research data conducted at Embry-Riddle Aeronautical University’s Suborbital Spaceflight Simulator.


Satellite Propulsion Spectral Signature Detection And Analysis For Space Situational Awareness Using Small Telescopes, Pamela L. Wheeler Aug 2017

Satellite Propulsion Spectral Signature Detection And Analysis For Space Situational Awareness Using Small Telescopes, Pamela L. Wheeler

Theses and Dissertations

Safe satellite operations are of utmost importance. Maintaining precise orbital maintenance places stringent performance requirements on current propulsion systems, which are often electric propulsion systems. Electron temperature is a commonly used diagnostic to determine the performance of a Hall thruster, and recent work has correlated near infrared (NIR) spectral measurements of ionization lines of xenon and krypton to electron temperature measurements. In the research herein, appropriate line spectra ratios are identified for each propellant type when used with remote space-to-ground observations. NIR plume emissions were used to characterize a 600 Watt Hall thruster for a variety of observation angles and ...