Open Access. Powered by Scholars. Published by Universities.®

Philosophy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Philosophy

Insect Consciousness: Commitments, Conflicts And Consequences, Colin Klein, Andrew B. Barron Nov 2016

Insect Consciousness: Commitments, Conflicts And Consequences, Colin Klein, Andrew B. Barron

Animal Sentience

Our target article, “Insects have the capacity for subjective experience,” has provoked a diverse range of commentaries. In this response we have collated what we see as the major themes of the discussion. It is clear that we differ from some commentators in our commitments to what subjective experience is and what the midbrain is capable of. Here we clarify where we stand on those points and how our view differs from some other influential perspectives. The commentaries have highlighted the most lively areas of disagreement. We revisit here the debates surrounding whether the cortex is essential for any form ...


Subjective Experience In Insects: Definitions And Other Difficulties, Shelley Adamo Aug 2016

Subjective Experience In Insects: Definitions And Other Difficulties, Shelley Adamo

Animal Sentience

Whether insects have the potential for subjective experiences depends on the definition of subjective experience. The definition used by Klein & Barron (2016) is an unusually liberal one and could be used to argue that some modern robots have subjective experiences. From an evolutionary perspective, the additional neurons needed to produce subjective experiences will be proportionately more expensive for insects than for mammals because of the small size of the insect brain. This greater cost could weaken selection for such traits. Minimally, it may be premature to assume that small neuronal number is unimportant in determining the capacity for consciousness.


Fish Pain's Burden Of Proof, Carl Safina Feb 2016

Fish Pain's Burden Of Proof, Carl Safina

Animal Sentience

A hypothesis like Key’s, that fish cannot feel pain, should really be stated as a null hypothesis — an assumption that there is no difference in the things being compared. Then evidence — including anecdotal evidence — for and against rejecting the null hypothesis can be examined and weighed. Key (2016a) has proven only that fish lack mammalian brains.


Fish Pain: A Painful Topic, Carl Safina Jan 2016

Fish Pain: A Painful Topic, Carl Safina

Animal Sentience

If fish cannot feel pain, why do stingrays have purely defensive tail spines that deliver venom? Stingrays’ ancestral predators are fish. And why do many fishes possess defensive fin spines, some also with venom that produces pain in humans? These things did not evolve just in case sentient humans would evolve millions of years later and then invent scuba. If fish react purely unconsciously to “noxious” stimuli, why aren’t sharp jabbing spines enough? Why also stinging venom?


No Evidence That Pain Is Painful Neural Process, Riccardo Manzotti Jan 2016

No Evidence That Pain Is Painful Neural Process, Riccardo Manzotti

Animal Sentience

Key (2016) claims that fish do not feel pain because they lack the neural structures that have a contingent causal role in generating and feeling pain in mammals. I counterargue that no conclusive evidence supports the sufficiency of any mammalian neural structure to produce pain. We cannot move from contingent necessity in mammals to necessity in every organism.


What Would The Babel Fish Say?, Monica Gagliano Jan 2016

What Would The Babel Fish Say?, Monica Gagliano

Animal Sentience

Starting with its title, Key’s (2016) target article advocates the view that fish do not feel pain. The author describes the neuroanatomical, physiological and behavioural conditions involved in the experience of pain in humans and rodents and confidently applies analogical arguments as though they were established facts in support of the negative conclusion about the inability of fish to feel pain. The logical reasoning, unfortunately, becomes somewhat incoherent, with the arbitrary application of the designated human criteria for an analogical argument to one animal species (e.g., rodents) but not another (fish). Research findings are reported selectively, and questionable ...


Brain Processes For “Good” And “Bad” Feelings: How Far Back In Evolution?, Jaak Panksepp Jan 2016

Brain Processes For “Good” And “Bad” Feelings: How Far Back In Evolution?, Jaak Panksepp

Animal Sentience

The question of whether fish can experience pain or any other feelings can only be resolved by neurobiologically targeted experiments. This commentary summarizes why this is essential for resolving scientific debates about consciousness in other animals, and offers specific experiments that need to be done: (i) those that evaluate the rewarding and punishing effects of specific brain regions and systems (for instance, with deep-brain stimulation); (ii) those that evaluate the capacity of animals to regulate their affective states; and (iii) those that have direct implications for human affective feelings, with specific predictions — for instance, the development of new treatments for ...


Pain In Fish: Weighing The Evidence, James D. Rose Jan 2016

Pain In Fish: Weighing The Evidence, James D. Rose

Animal Sentience

The target article by Key (2016) examines whether fish have brain structures capable of mediating pain perception and consciousness, functions known to depend on the neocortex in humans. He concludes, as others have concluded (Rose 2002, 2007; Rose et al. 2014), that such functions are impossible for fish brains. This conclusion has been met with hypothetical assertions by others to the effect that functions of pain and consciousness may well be possible through unknown alternate neural processes. Key's argument would be bolstered by consideration of other neurological as well as behavioral evidence, which shows that sharks and ray are ...


Why Fish Do Not Feel Pain, Brian Key Jan 2016

Why Fish Do Not Feel Pain, Brian Key

Animal Sentience

Only humans can report feeling pain. In contrast, pain in animals is typically inferred on the basis of nonverbal behaviour. Unfortunately, these behavioural data can be problematic when the reliability and validity of the behavioural tests are questionable. The thesis proposed here is based on the bioengineering principle that structure determines function. Basic functional homologies can be mapped to structural homologies across a broad spectrum of vertebrate species. For example, olfaction depends on olfactory glomeruli in the olfactory bulbs of the forebrain, visual orientation responses depend on the laminated optic tectum in the midbrain, and locomotion depends on pattern generators ...


Should Fish Feel Pain? A Plant Perspective, František Baluška Jan 2016

Should Fish Feel Pain? A Plant Perspective, František Baluška

Animal Sentience

Key (2016) claims fish that fish do not feel pain because they lack the necessary neuronal architecture: their responses to noxious stimuli, according to Key, are executed automatically without any feelings. However, as pointed out by many of his commentators, this conclusion is not convincing. Plants might provide some clues. Plants are not usually thought to be very active behaviorally, but the evidence suggests otherwise. Moreover, in stressful situations, plants produce numerous chemicals that have painkilling and anesthetic properties. Finally, plants, when treated with anesthetics, cannot execute active behaviors such as touch-induced leaf movements or rapid trap closures after localizing ...


Cortex Necessary For Pain — But Not In Sense That Matters, Adam J. Shriver Jan 2016

Cortex Necessary For Pain — But Not In Sense That Matters, Adam J. Shriver

Animal Sentience

Certain cortical regions are necessary for pain in humans in the sense that, at particular times, they play a direct role in pain. However, it is not true that they are necessary in the more important sense that pain is never possible in humans without them. There are additional details from human lesion studies concerning functional plasticity that undermine Key’s (2016) interpretation. Moreover, no one has yet identified any specific behaviors that mammalian cortical pain regions make possible that are absent in fish.


Anthropomorphic Denial Of Fish Pain, Lynne U. Sneddon, Matthew C. Leach Jan 2016

Anthropomorphic Denial Of Fish Pain, Lynne U. Sneddon, Matthew C. Leach

Animal Sentience

Key (2016) affirms that we do not know how the fish brain processes pain but denies — because fish lack a human-like cortex — that fish can feel pain. He affirms that birds, like fish, have a singly-laminated cortex and that the structure of the bird brain is quite different from that of the human brain, yet he does not deny that birds can feel pain. In this commentary we describe how Key cites studies that substantiate mammalian pain but discounts the same kind of data as evidence of fish pain. We suggest that Key's interpretations are illogical, do not reflect ...


Nonverbal Indicators Of Pain, Simon Van Rysewyk Jan 2016

Nonverbal Indicators Of Pain, Simon Van Rysewyk

Animal Sentience

In discussing fish pain, Key (2016) privileges pain in humans — “the only species able to directly report on its feelings.” Human experience of pain is not necessarily best reflected by verbal self-report, however. Neural responses to noxious stimuli are influenced by individual differences and by context. Nonverbal pain displays such as facial expressions reflect part of the neural response to noxious stimuli. Most mammals have a specific facial grimace reflecting pain. If fish have a somatic expression of pain, the development of a reliable and accurate somatic pain scale specific to fish could make a contribution to the debate about ...


Fish And Pain: The Politics Of Doubt, Dinesh Joseph Wadiwel Jan 2016

Fish And Pain: The Politics Of Doubt, Dinesh Joseph Wadiwel

Animal Sentience

The commentaries on Key’s (2016) target article make it clear that there is a great deal of doubt about Key’s thesis that fish do not feel pain. The political question therefore is about how we should respond to doubt. If the thesis of Key and others (that fish do not feel pain) is wrong, then the negative impact for fish in terms of suffering caused by human utilisation would be extreme. In the face of this doubt, the very least we can do is to adopt basic welfare precautions to mitigate the potential impact if fish do suffer ...


Fish Pain: An Inconvenient Truth, Culum Brown Jan 2016

Fish Pain: An Inconvenient Truth, Culum Brown

Animal Sentience

Whether fish feel pain is a hot political topic. The consequences of our denial are huge given the billions of fish that are slaughtered annually for human consumption. The economic costs of changing our commercial fishery harvest practices are also likely to be great. Key outlines a structure-function analogy of pain in humans, tries to force that template on the rest of the vertebrate kingdom, and fails. His target article has so far elicited 34 commentaries from scientific experts from a broad range of disciplines; only three of these support his position. The broad consensus from the scientific community is ...


Fish Pain: Would It Change Current Best Practice In The Real World?, B. K. Diggles Jan 2016

Fish Pain: Would It Change Current Best Practice In The Real World?, B. K. Diggles

Animal Sentience

Much of the “fish pain debate” relates to how high the bar for pain should be set. The close phylogenetic affinities of teleosts with cartilaginous fishes which appear to lack nociceptors suggests caution should be applied by those who seek to lower the bar, especially given the equivocal and conflicting nature of the experimental data currently available for teleosts. Nevertheless, even if we assume fish “feel pain,” it is difficult to see how current best practice in aquaculture would change. This is because of the need to avoid stress at all stages of the rearing process to optimize health, growth ...