Open Access. Powered by Scholars. Published by Universities.®

Philosophy Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Animal Sentience

Fish pain

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Philosophy

Fish Sentience, Consciousness, And Ai, Ila France Porcher Jan 2018

Fish Sentience, Consciousness, And Ai, Ila France Porcher

Animal Sentience

The systematic criticism of articles providing evidence that fish and invertebrates can feel pain is discussed. Beliefs are known to be stronger than evidence in the human mind, and could generate this outcry, while from another perspective, the criticisms appear as a territorial move by fishermen against a perceived threat to their domain. The scientific inconsistency in which consciousness is granted to machines but not to fish and invertebrates, purely due to political bias, is pointed out. No basis exists for denying sentience to any life form as long as science is ignorant of the nature and source of consciousness.


Fish Pain's Burden Of Proof, Carl Safina Feb 2016

Fish Pain's Burden Of Proof, Carl Safina

Animal Sentience

A hypothesis like Key’s, that fish cannot feel pain, should really be stated as a null hypothesis — an assumption that there is no difference in the things being compared. Then evidence — including anecdotal evidence — for and against rejecting the null hypothesis can be examined and weighed. Key (2016a) has proven only that fish lack mammalian brains.


Going Beyond Just-So Stories, Brian Key Jan 2016

Going Beyond Just-So Stories, Brian Key

Animal Sentience

Colloquial arguments for fish feeling pain are deeply rooted in anthropometric tendencies that confuse escape responses to noxious stimuli with evidence for consciousness. More developed arguments often rely on just-so stories of fish displaying complex behaviours as proof of consciousness. In response to commentaries on the idea that fish do not feel pain, I raise the need to go beyond just-so stories and to rigorously analyse the neural circuitry responsible for specific behaviours using new and emerging technologies in neuroscience. By deciphering the causal relationship between neural information processing and conscious behaviour, it should be possible to assess cogently the ...


Why Babies Do Not Feel Pain, Or: How Structure-Derived Functional Interpretations Can Go Wrong, Helmut Segner Jan 2016

Why Babies Do Not Feel Pain, Or: How Structure-Derived Functional Interpretations Can Go Wrong, Helmut Segner

Animal Sentience

The response to pain involves a non-conscious, reflexive action and a conscious perception. According to Key (2016), consciousness — and thus pain perception — depends on a neuronal correlate that has a “unique neural architecture” as realized in the human cortex. On the basis of the “bioengineering principle that structure determines function,” Key (2016) concludes that animal species such as fish, which lack the requisite cortex-like neuroanatomical structure, are unable to feel pain. This commentary argues that the relationship between brain structure and brain function is less straightforward than suggested in Key’s target article.


Fish Pain: A Painful Topic, Carl Safina Jan 2016

Fish Pain: A Painful Topic, Carl Safina

Animal Sentience

If fish cannot feel pain, why do stingrays have purely defensive tail spines that deliver venom? Stingrays’ ancestral predators are fish. And why do many fishes possess defensive fin spines, some also with venom that produces pain in humans? These things did not evolve just in case sentient humans would evolve millions of years later and then invent scuba. If fish react purely unconsciously to “noxious” stimuli, why aren’t sharp jabbing spines enough? Why also stinging venom?