Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

2,806 Full-Text Articles 5,185 Authors 1,005,106 Downloads 90 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

2,806 full-text articles. Page 1 of 117.

Impact Of Chain Architecture On The Thickness Dependence Of Physical Aging Rate Of Thin Polystyrene Films, Gregory Brown, Elizabeth Lewis, Bryan D. Vogt 2020 University of Akron

Impact Of Chain Architecture On The Thickness Dependence Of Physical Aging Rate Of Thin Polystyrene Films, Gregory Brown, Elizabeth Lewis, Bryan D. Vogt

Williams Honors College, Honors Research Projects

The dynamics of polymer thin films have been demonstrated to be significantly altered from the bulk, but the origins of such differences are not well defined. In this work, we seek to understand the differences in the structural dynamics (or physical aging) of polystyrene (PS) through branching and other well defined architectures (comb and centipede). The aging dynamics of ultrathin films (< 30 nm) differ from relatively thick films (100-150nm) with linear PS thin films aging more rapidly than the relatively “bulk-like” thick films. Ellipsometric measurements are used to characterize the physical aging rate of the films. The change in film thickness and refractive index as the films are held below the glass transition temperature (Tg) provides a simple measure of the physical aging. In this study, four different architectures (linear, comb, 4 arm star, and centipede) will be investigated. For each PS architecture, the aging rate will be determined for film thickness ranging ...


Transport Properties And Strength Development Of Blended Cement Mortars Containing Nano-Silica, Ali Akbar Ramezanianpour, Sajjad Mirvalad, Mehrdad Mortezaei 2019 Concrete Technology and Durability Research Center, Amirkabir University of Technology, Tehran, Iran

Transport Properties And Strength Development Of Blended Cement Mortars Containing Nano-Silica, Ali Akbar Ramezanianpour, Sajjad Mirvalad, Mehrdad Mortezaei

International Conference on Durability of Concrete Structures

In the present study, the mechanical properties and durability of blended cement mortars containing nanosilica and natural pozzolans is investigated. Trass and pumice, two different Iranian natural pozzolan, are used in the experiments. For cement blends preparation, nano-silica replacement levels of 2, 3 and 4% by mass of cement was considered; each mixture contained one of the natural pozzolans with a fixed replacement percentage of 15. The Standard mortar samples were made with w/cm ratio of 0.485; the flow of all mortars ranged from 14 to 16 cm. All prepared mortars’ samples were cured in saturated limewater until ...


#20 - Nanocellulose Aerogel From Biomass Waste For Water Purification, Harshvardhan Singh 2019 Mercer University

#20 - Nanocellulose Aerogel From Biomass Waste For Water Purification, Harshvardhan Singh

Georgia Undergraduate Research Conference (GURC)

Purpose of the experiment: Energy cane is a perennial, non-food, low input crop popular for bioethanol production. The biomass waste (bagasse) consists up to 42% cellulose and is often underutilized. Limited research has been conducted on value added product potential of cellulose nanofibrils (CNF) utilizing energy cane. Hydrophobic CNF aerogels can selectively remove oil and other impurities from water with limited environmental impact. The purpose of this project was to synthesize aerogels from bagasse as a value-added greener product for growers involved in the biofuel industry with a potential application in water purification.

Procedure: Finely ground and dried bagasse and ...


Vitamin A Deficiency Impairs The Immune Response To Intranasal Vaccination And Rsv Infection In Neonatal Calves, Jodi L. McGill, Sean M. Kelly, Mariana Guerra-Maupome, Emma Winkley, Jamie Henningson, Balaji Narasimhan, Randy E. Sacco 2019 Iowa State University

Vitamin A Deficiency Impairs The Immune Response To Intranasal Vaccination And Rsv Infection In Neonatal Calves, Jodi L. Mcgill, Sean M. Kelly, Mariana Guerra-Maupome, Emma Winkley, Jamie Henningson, Balaji Narasimhan, Randy E. Sacco

Balaji Narasimhan

Respiratory syncytial virus (RSV) infection is a leading cause of severe acute lower respiratory tract infection in infants and children worldwide. Vitamin A deficiency (VAD) is one of the most prevalent nutrition-related health problems in the world and is a significant risk factor in the development of severe respiratory infections in infants and young children. Bovine RSV (BRSV) is a primary cause of lower respiratory tract disease in young cattle. The calf model of BRSV infection is useful to understand the immune response to human RSV infection. We have previously developed an amphiphilic polyanhydride nanoparticle (NP)-based vaccine (i.e ...


Vitamin A Deficiency Impairs The Immune Response To Intranasal Vaccination And Rsv Infection In Neonatal Calves, Jodi L. McGill, Sean M. Kelly, Mariana Guerra-Maupome, Emma Winkley, Jamie Henningson, Balaji Narasimhan, Randy E. Sacco 2019 Iowa State University

Vitamin A Deficiency Impairs The Immune Response To Intranasal Vaccination And Rsv Infection In Neonatal Calves, Jodi L. Mcgill, Sean M. Kelly, Mariana Guerra-Maupome, Emma Winkley, Jamie Henningson, Balaji Narasimhan, Randy E. Sacco

Chemical and Biological Engineering Publications

Respiratory syncytial virus (RSV) infection is a leading cause of severe acute lower respiratory tract infection in infants and children worldwide. Vitamin A deficiency (VAD) is one of the most prevalent nutrition-related health problems in the world and is a significant risk factor in the development of severe respiratory infections in infants and young children. Bovine RSV (BRSV) is a primary cause of lower respiratory tract disease in young cattle. The calf model of BRSV infection is useful to understand the immune response to human RSV infection. We have previously developed an amphiphilic polyanhydride nanoparticle (NP)-based vaccine (i.e ...


Complex Oscillatory Decrease With Size In Diffusivity Of {100}-Epitaxially Supported 3d Fcc Metal Nanoclusters, King C. Lai, James W. Evans 2019 Iowa State University and Ames Laboratory

Complex Oscillatory Decrease With Size In Diffusivity Of {100}-Epitaxially Supported 3d Fcc Metal Nanoclusters, King C. Lai, James W. Evans

James W. Evans

Diffusion and coalescence of supported 3D metal nanoclusters (NCs) leads to Smoluchowski Ripening (SR), a key pathway for catalyst degradation. Variation of the NC diffusion coefficient, DN, with size N (in atoms) controls SR kinetics. Traditionally, a form DN ∼ N−β was assumed consistent with mean-field analysis. However, KMC simulation of a stochastic model for diffusion of {100}-epitaxially supported fcc NCs mediated by surface diffusion reveals instead a complex oscillatory decrease of DN with N. Barriers for surface diffusion of metal atoms across and between facets, along step edges, etc., in this model are selected to accurately capture behavior ...


Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim 2019 Singh Center for Nanotechnology

Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim

Tool Data

S1805 positive photoresist has been deposited on single crystalline Si wafers using a Suss MicroTec Alta Spray. The influence of flow rate, nozzle speed, pitch and number of passes on the thickness of the photoresist was studied. Results show that the thickness of S1805 is linearly proportional to the flow rate and number of passes, and inversely proportional to the nozzle speed and pitch.


Complex Oscillatory Decrease With Size In Diffusivity Of {100}-Epitaxially Supported 3d Fcc Metal Nanoclusters, King C. Lai, James W. Evans 2019 Iowa State University and Ames Laboratory

Complex Oscillatory Decrease With Size In Diffusivity Of {100}-Epitaxially Supported 3d Fcc Metal Nanoclusters, King C. Lai, James W. Evans

Ames Laboratory Accepted Manuscripts

Diffusion and coalescence of supported 3D metal nanoclusters (NCs) leads to Smoluchowski Ripening (SR), a key pathway for catalyst degradation. Variation of the NC diffusion coefficient, DN, with size N (in atoms) controls SR kinetics. Traditionally, a form DN ∼ N−β was assumed consistent with mean-field analysis. However, KMC simulation of a stochastic model for diffusion of {100}-epitaxially supported fcc NCs mediated by surface diffusion reveals instead a complex oscillatory decrease of DN with N. Barriers for surface diffusion of metal atoms across and between facets, along step edges, etc., in this model are selected to accurately capture behavior ...


Effects Of Three Dry Powder Inhalers On Deposition Of Aerosolized Medicine In The Human Oral-Pharyngeal-Laryngeal Regions, Mohammed Ali 2019 The University of Texas at Tyler

Effects Of Three Dry Powder Inhalers On Deposition Of Aerosolized Medicine In The Human Oral-Pharyngeal-Laryngeal Regions, Mohammed Ali

Mohammed Ali

The dry powder inhaler (DPI) is a popular, effective and convenient drug delivery device for inhalation therapy to treat asthma. However, a large quantity (approximately 54%) of inhaled aerosols deposit in the oropharyngeal region. Deposition in this region is undesirable because it provides minimum therapeutic benefits and has adverse localized or systemic side effects. This study reports a method of examining electrostatic charge effects on deposition of three DPI aerosols (Spiriva Handihaler, Advair Diskus, and Pulmicort Turbohaler) in a cadaver-based cast of the human oral-pharyngeal-laryngeal (OPL) regions. Experimental aerosols were generated from the three commercially available DPIs by means of ...


Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss 2019 The Graduate Center, City University of New York

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

All Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine ...


Nanogaps On Atomically Thin Materials As Non-Volatile Read/Writable Memory Devices, Douglas Robert Strachan, Abhishek Sundararajan, Mathias Joseph Boland 2019 University of Kentucky

Nanogaps On Atomically Thin Materials As Non-Volatile Read/Writable Memory Devices, Douglas Robert Strachan, Abhishek Sundararajan, Mathias Joseph Boland

Physics and Astronomy Faculty Patents

The present invention relates to the presence of nanogaps across a metal dispersed over an atomically-thin material, such that the nanogap exposes the atomically-thin material. The resulting device offers an ultra-short gap with ballistic transport and demonstrated switching in the presence of a gate or dielectric material in close proximity to the channel.


Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma 2019 Chinese Academy of Sciences & University of Science and Technology of China

Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma

Mechanical & Materials Engineering Faculty Publications

In advanced fission and fusion reactors, structural materials suffer from high dose irradiation by energetic particles and are subject to severe microstructure damage. He atoms, as a byproduct of the (n) transmutation reaction, could accumulate to form deleterious cavities, which accelerate radiation-induced embrittlement, swelling and surface deterioration, ultimately degrade the service lifetime of reactor materials. Extensive studies have been performed to explore the strategies that can mitigate He ion irradiation damage. Recently, nanostructured materials have received broad attention because they contain abundant interfaces that are efficient sinks for radiation-induced defects. In this review, we summarize and analyze the current understandings ...


Synthesis And Optical Properties Of Ordered-Vacancy Perovskite Cesium Bismuth Halide Nanocrystals, Rainie D. Nelson, Kalyan Santra, Y. Wang, Atefe Hadi, Jacob W. Petrich, Matthew G. Panthani 2019 Iowa State University

Synthesis And Optical Properties Of Ordered-Vacancy Perovskite Cesium Bismuth Halide Nanocrystals, Rainie D. Nelson, Kalyan Santra, Y. Wang, Atefe Hadi, Jacob W. Petrich, Matthew G. Panthani

Matthew Panthani

Perovskite-phase cesium bismuth halide (Cs3Bi2X9; X = Cl, Br, I) nanocrystals were synthesized using a hot-injection approach. These nanocrystals adopted ordered-vacancy perovskite crystal structures and demonstrated composition-tunable optical properties. Growth occurred by initial formation of Bi0 seeds, and morphology was controlled by precursor and seed concentration. The Cs3Bi2I9 nanocrystals demonstrated excellent stability under ambient conditions for several months. Contrary to previous reports, we find that photoluminescence originates from the precursor material as opposed to the Cs3Bi2X9 nanocrystals.


Ambient Synthesis Of Nanomaterials By In Situ Heterogeneous Metal/Ligand Reactions, Boyce S. Chang, Brijith Thomas, Jiahao Chen, Ian D. Tevis, Paul Karanja, Simge Çınar, Amrit Venkatesh, Aaron Rossini, Martin M. Thuo 2019 Iowa State University and Ames Laboratory

Ambient Synthesis Of Nanomaterials By In Situ Heterogeneous Metal/Ligand Reactions, Boyce S. Chang, Brijith Thomas, Jiahao Chen, Ian D. Tevis, Paul Karanja, Simge Çınar, Amrit Venkatesh, Aaron Rossini, Martin M. Thuo

Martin M. Thuo

Coordination polymers are ideal synthons in creating high aspect ratio nanostructures, however, conventional synthetic methods are often restricted to batch-wise and costly processes. Herein, we demonstrate a non-traditional, frugal approach to synthesize 1D coordination polymers by in situ etching of zerovalent metal particle precursors. This procedure is denoted as the heterogeneous metal/ligand reaction and was demonstrated on Group 13 metals as a proof of concept. Simple carboxylic acids supply the etchant protons and ligands for metal ions (conjugate base) in a 1 : 1 ratio. This scalable reaction produces a 1D polymer that assembles into high-aspect ratio ‘nanobeams’. We demonstrate ...


The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim 2019 University of Nebraska-Lincoln

The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim

Mechanical & Materials Engineering Faculty Publications

Mesenchymal stem cells (MSCs) show tremendous promise as a cell source for tissue engineering and regenerative medicine, and are understood to be mechanosensitive to external mechanical environments. In recent years, increasing evidence points to nuclear envelope proteins as a key player in sensing and relaying mechanical signals in MSCs to modulate cellular form, function, and differentiation. Of particular interest is the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex that includes nesprin and SUN. In this review, the way in which cells can sense external mechanical environments through an intact nuclear envelope and LINC complex proteins will be briefly described. Then ...


On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang 2019 University of Nebraska-Lincoln

On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang

Mechanical & Materials Engineering Faculty Publications

We previously reported the finding of a linear correlation between the change of energy dissipation (ΔD) of adhered cells measured with the quartz crystal microbalance with dissipation monitoring (QCM-D) and the level of focal adhesions of the cells. To account for this correlation, we have developed a theoretical framework for assessing the ΔD-response of adhered cells. We rationalized that the mechanical energy of an oscillating QCM-D sensor coupled with a cell monolayer is dissipated through three main processes: the interfacial friction through the dynamic restructuring (formation and rupture) of cell-extracellular matrix (ECM) bonds, the interfacial viscous damping by the liquid ...


Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen 2019 Iowa State University

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Mechanical Engineering Publications

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Fabrication Of High-Resolution Graphene-Based Flexible Electronics Via Polymer Casting, Metin Uz, Kyle Jackson, Maxsam S. Donta, Juhyung Jung, Matthew T. Lentner, John A. Hondred, Jonathan C. Claussen, Surya K. Mallapragada 2019 Iowa State University

Fabrication Of High-Resolution Graphene-Based Flexible Electronics Via Polymer Casting, Metin Uz, Kyle Jackson, Maxsam S. Donta, Juhyung Jung, Matthew T. Lentner, John A. Hondred, Jonathan C. Claussen, Surya K. Mallapragada

Jonathan C. Claussen

In this study, a novel method based on the transfer of graphene patterns from a rigid or flexible substrate onto a polymeric film surface via solvent casting was developed. The method involves the creation of predetermined graphene patterns on the substrate, casting a polymer solution, and directly transferring the graphene patterns from the substrate to the surface of the target polymer film via a peeling-off method. The feature sizes of the graphene patterns on the final film can vary from a few micrometers (as low as 5 µm) to few millimeters range. This process, applied at room temperature, eliminates the ...


Fabrication Of High-Resolution Graphene-Based Flexible Electronics Via Polymer Casting, Metin Uz, Kyle Jackson, Maxsam S. Donta, Juhyung Jung, Matthew T. Lentner, John A. Hondred, Jonathan C. Claussen, Surya K. Mallapragada 2019 Iowa State University

Fabrication Of High-Resolution Graphene-Based Flexible Electronics Via Polymer Casting, Metin Uz, Kyle Jackson, Maxsam S. Donta, Juhyung Jung, Matthew T. Lentner, John A. Hondred, Jonathan C. Claussen, Surya K. Mallapragada

Surya K. Mallapragada

In this study, a novel method based on the transfer of graphene patterns from a rigid or flexible substrate onto a polymeric film surface via solvent casting was developed. The method involves the creation of predetermined graphene patterns on the substrate, casting a polymer solution, and directly transferring the graphene patterns from the substrate to the surface of the target polymer film via a peeling-off method. The feature sizes of the graphene patterns on the final film can vary from a few micrometers (as low as 5 µm) to few millimeters range. This process, applied at room temperature, eliminates the ...


Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen 2019 Iowa State University

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Carmen Gomes

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Digital Commons powered by bepress