Open Access. Powered by Scholars. Published by Universities.®

Other Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

976 Full-Text Articles 2,149 Authors 519,931 Downloads 68 Institutions

All Articles in Other Mechanical Engineering

Faceted Search

976 full-text articles. Page 7 of 43.

Nasa Microgravity: Internal Structure And Recovery Method Optimization, Brenna Doherty 2018 University of Wyoming

Nasa Microgravity: Internal Structure And Recovery Method Optimization, Brenna Doherty

Honors Theses AY 17/18

Microgravity is defined as a state of having very little gravity, such as that experienced in space. Research has been performed by NASA for over 25 years as a way to determine how space technologies are impacted by a microgravity environment. To simulate microgravity, an aerodynamic payload is dropped in a vacuum chamber or from high altitudes until a state of freefall is reached. NASA drop towers are the standard microgravity testing platforms used today. These towers can produce microgravity environments for 2.2-5.2 seconds; however, these platforms are expensive and require months of advanced planning. The University of ...


Accelerated Creative Problem Solving And Product Improvement Applied To Experimental Devices In A Bloodstain Pattern Interpretation Class--Improving The Role Of Insight Development Tools As A Generator Of New Ideas In Novel Situations, Douglas Ridolfi 2018 State University of New York College at Buffalo - Buffalo State College

Accelerated Creative Problem Solving And Product Improvement Applied To Experimental Devices In A Bloodstain Pattern Interpretation Class--Improving The Role Of Insight Development Tools As A Generator Of New Ideas In Novel Situations, Douglas Ridolfi

Creative Studies Graduate Student Master's Projects

This project uses an action research centered study protocol to examine the effects of a problem-based learning exercise related to bloodstain pattern interpretation in a crime scene processing and general criminalistics class taught as part of an upper division forensic chemistry major in a four year college. The goal is to apply design principles and creative problem solving methods directly adapted to a project involving interpreting a set of crime scene photographs depicting blood spatter and with the aid of guided exercises in ideation and design, lead students into the development of alternate theories of how the bloodstains were created ...


Peridynamic Modeling Of Dynamic Fracture In Bio-Inspired Structures For High Velocity Impacts, Sneha Akula 2018 University of Nebraska-Lincoln

Peridynamic Modeling Of Dynamic Fracture In Bio-Inspired Structures For High Velocity Impacts, Sneha Akula

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Bio-inspired damage resistant models have distinct patterns like brick-mortar, Voronoi, helicoidal etc., which show exceptional damage mitigation against high-velocity impacts. These unique patterns increase damage resistance (in some cases up to 3000 times more than the constituent materials) by effectively dispersing the stress waves produced by the impact. Ability to mimic these structures on a larger scale can be ground-breaking and could be used in numerous applications. Advancements in 3D printing have now made possible fabrication of these patterns with ease and at a low cost. Research on dynamic fracture in bio-inspired structures is very limited but it is crucial ...


Concomitant Crystallization In Propylene/Ethylene Random Copolymer With Strong Flow At Elevated Temperatures, Lirong Zheng, Lucia Fernandez-Ballester, Gerrit W. M. Peters, Zhe Ma 2018 Tianjin University

Concomitant Crystallization In Propylene/Ethylene Random Copolymer With Strong Flow At Elevated Temperatures, Lirong Zheng, Lucia Fernandez-Ballester, Gerrit W. M. Peters, Zhe Ma

Mechanical & Materials Engineering Faculty Publications

Flow-induced crystallization of α- and γ-phases was studied for a propylene/ethylene random copolymer with 3.4 mol % ethylene at two high temperatures of 132 and 142 °C by combining a pressure-driven slit flow device with real-time synchrotron wide-angle X-ray diffraction. At 132 °C, it was found that both α- and γ-phases were generated at shear stresses ranging from 0.091 to 0.110 MPa and that the γ-phase always appeared later than the α-phase. However, for 142 °C and the same stresses, only the α-phase formed. Only upon cooling the partially crystallized copolymer did the γ-phase emerge. The lack ...


Baseline Data From Servo Motors In A Robotic Arm For Autonomous Machine Fault Diagnosis, Jacob Brown 2018 University of Arkansas, Fayetteville

Baseline Data From Servo Motors In A Robotic Arm For Autonomous Machine Fault Diagnosis, Jacob Brown

Mechanical Engineering Undergraduate Honors Theses

Fault diagnosis can prolong the life of machines if potential sources of failure are discovered and corrected before they occur. Supervised machine learning, or the use of training data to enable machines to discover these faults on their own, makes failure prevention much easier. The focus of this thesis is to investigate the feasibility of creating datasets of various faults at both the component and system level for a servomotor and a compatible robotic arm, such that this data can be used in machine learning algorithms for fault diagnosis. The faults induced at the component level in different servomotors include ...


Method Of Fabricating A Continuous Nanofiber, Yuris Dzenis 2018 Lincoln, Nebraska

Method Of Fabricating A Continuous Nanofiber, Yuris Dzenis

Mechanical & Materials Engineering Faculty Publications

A method of fabricating a continuous nanofiber is described . The method includes preparing a solution of one or more polymers and one or more solvents and electrospinning the solution by discharging the solution through one or more liquid jets into an electric field to yield one or more continuous nanofibers . The electrospinning process ( i ) highly orients one or more polymer chains in the one or more continuous nanofibers along a fiber axis of the one or more continuous nanofibers , and ( ii ) suppresses polymer crystallization in the one or more continuous nanofibers . The one or more continuous nanofibers can have diameters ...


A Numerical Investigation Of Human Cough Jet Development And Droplet Dispersion, Ran Bi 2018 The University of Western Ontario

A Numerical Investigation Of Human Cough Jet Development And Droplet Dispersion, Ran Bi

Electronic Thesis and Dissertation Repository

As part of the Western Cold and Flu aerosol (WeCoF) studies, the present study provides Computational Fluid Dynamics (CFD) modelling of human cough flow. The cough flow is characterized in two different aspects, the flow field and the droplets. In the study of the flow field of coughing, various dynamic characteristics, including the velocity variation, streamwise penetration and power spectral density, are examined. CFD simulations using two different approaches, the unsteady Reynolds Averaged Navier-Stokes (URANS) and the large eddy simulation (LES), are performed for comparison purposes. The numerical results are validated by the experimental data obtained from the measurements by ...


Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen 2018 The University of Western Ontario

Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen

Electronic Thesis and Dissertation Repository

Conjugated polymers are a class of electromechanically active materials that can produce motion in response to an electric potential. This motion can be harnessed to perform mechanical work, and therefore these materials are particularly well suited for use as sensors and actuators in microelectromechanical systems. Conventional methods to fabricate conjugated polymer actuators result in planar morphologies that limit fabricated devices to simplistic linear or bending actuation modes. To overcome this limitation, this work develops a conjugated polymer formulation and associated additive manufacturing method capable of realizing three-dimensional conductive polymer structures. A light-based additive manufacturing technique known as vat polymerization is ...


A Numerical Tool For Predicting The Spatial Decay Of Freestream Turbulence., Dwaipayan Sarkar 2018 The University of Western Ontario

A Numerical Tool For Predicting The Spatial Decay Of Freestream Turbulence., Dwaipayan Sarkar

Electronic Thesis and Dissertation Repository

The present numerical work is an attempt towards modelling of freely decaying homogeneous isotropic turbulence with its application in experimental modelling of the effect of incident turbulence on flow around 2D and 3D bluff-bodies. Both steady, Reynolds Averaged Navier Stokes (RANS) and unsteady, Large Eddy Simulation (LES), 3-D numerical computational fluid dynamics (CFD) techniques have been employed to characterise the inviscid decay of large-scale turbulence in terms of the characteristic r.m.s turbulent velocity fluctuations ( ) and the local integral length scale (Lu). The large-scale turbulent properties extracted from the current numerical simulations are inter-related and are shown to ...


Experimental Simulation Of Density-Driven Thunderstorm Downbursts, Roghayyeh Babaei koli 2018 The University of Western Ontario

Experimental Simulation Of Density-Driven Thunderstorm Downbursts, Roghayyeh Babaei Koli

Electronic Thesis and Dissertation Repository

Evaporative cooling of the precipitation within the thunderstorm cloud results in the formation of a mass of cold and dense air which moves toward the ground and after impingement turns into strong radial winds near the surface. In this study, an experimental approach was taken to investigate the downbursts. The two-fluid model was used, and the various features of the experimental setup of previous researchers were modified to incorporate the specifications of natural downbursts. First, two new release cylinders were manufactured and their capabilities in producing repeatable and symmetric outflows were examined. Then, the effects of cylinder wall design, density ...


Design And Testing Of A Linear Compliant Mechanism With Adjustable Force Output, William Niemeier 2018 University of South Florida

Design And Testing Of A Linear Compliant Mechanism With Adjustable Force Output, William Niemeier

Graduate Theses and Dissertations

This thesis presents a novel compliant mechanism with adjustable force output. The force comes from the bending of a rectangular cross section beam within the mechanism. By rotating this beam with a stepper motor, the force output of the mechanism changes. A model was made to simulate this mechanism, and a prototype was made based off of this data. A test apparatus was constructed around this mechanism, and a series of tests were performed. These tests adjusted parameters such as beam rotation speed and weight in order to characterize the system. Adjustments were made based on this information and the ...


The Effect Of Poly (Glycerol Sebacate) Incorporation Within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds, Tuerdimaimaiti Abudula, Lassaad Gzara, Giovanna Simonetti, Ahmed Alshahrie, Numan Salah, Pierfrancesco Morganti, Angelo Chianese, Afsoon Fallahi, Ali Tamayol, Sidi A. Bencherif, Adnan Memic 2018 King Abdul Aziz University

The Effect Of Poly (Glycerol Sebacate) Incorporation Within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds, Tuerdimaimaiti Abudula, Lassaad Gzara, Giovanna Simonetti, Ahmed Alshahrie, Numan Salah, Pierfrancesco Morganti, Angelo Chianese, Afsoon Fallahi, Ali Tamayol, Sidi A. Bencherif, Adnan Memic

Mechanical & Materials Engineering Faculty Publications

Chitin and lignin primarily accumulate as bio-waste resulting from byproducts of crustacean crusts and plant biomass. Recently, their use has been proposed for diverse and unique bioengineering applications, amongst others. However, their weak mechanical properties need to be improved in order to facilitate their industrial utilization. In this paper, we fabricated hybrid fibers composed of a chitin–lignin (CL)-based sol–gel mixture and elastomeric poly (glycerol sebacate) (PGS) using a standard electrospinning approach. Obtained results showed that PGS could be coherently blended with the sol–gel mixture to form a nanofibrous scaffold exhibiting remarkable mechanical performance and improved antibacterial ...


Cal Poly Rose Float Overheight Mechanism, Ali A. Harake, Breanna H. Tran, Morgan K. Montalvo, Sergio B. Gutierrez 2018 California Polytechnic State University, San Luis Obispo

Cal Poly Rose Float Overheight Mechanism, Ali A. Harake, Breanna H. Tran, Morgan K. Montalvo, Sergio B. Gutierrez

Mechanical Engineering

The Cal Poly Universities jointly build and enter a floral entry, commonly known as a float, into the Pasadena Tournament of Roses Rose Parade. At the end of this parade route, there is a 16’6” bridge all floats must drive under. The scope of our project is to design and build a mechanism roughly described as an “overheight” mechanism, as its function is to raise and lower large heavy structures so the float is able to pass under the bridge. This hydraulic mechanism is powered via the float animation system.


Powder Bed Surface Quality And Particle Size Distribution For Metal Additive Manufacturing And Comparison With Discrete Element Model, Irene Yee 2018 California Polytechnic State University, San Luis Obispo

Powder Bed Surface Quality And Particle Size Distribution For Metal Additive Manufacturing And Comparison With Discrete Element Model, Irene Yee

Master's Theses and Project Reports

Metal additive manufacturing (AM) can produce complex parts that were once considered impossible or too costly to fabricate using conventional machining techniques, making AM machines an exceptional tool for rapid prototyping, one-off parts, and labor-intensive geometries. Due to the growing popularity of this technology, especially in the defense and medical industries, more researchers are looking into the physics and mechanics behind the AM process. Many factors and parameters contribute to the overall quality of a part, one of them being the powder bed itself. So far, little investigation has been dedicated to the behavior of the powder in the powder ...


The Positive Role Of Curcumin-Loaded Salmon Nanoliposomes On The Culture Of Primary Cortical Neurons, Mahmoud Hasan, Shahrzad Latifi, Cyril J.F. Kahn, Ali Tamayol, Rouhollah Habibey, Elodie Passeri, Michel Linder, Elmira Arab-Tehrany 2018 Université de Lorraine

The Positive Role Of Curcumin-Loaded Salmon Nanoliposomes On The Culture Of Primary Cortical Neurons, Mahmoud Hasan, Shahrzad Latifi, Cyril J.F. Kahn, Ali Tamayol, Rouhollah Habibey, Elodie Passeri, Michel Linder, Elmira Arab-Tehrany

Mechanical & Materials Engineering Faculty Publications

Curcumin (diferuloylmethane) is a natural bioactive compound with many health-promoting benefits. However, its poor water solubility and bioavailability has limited curcumin’s biomedical application. In the present study, we encapsulated curcumin into liposomes, formed from natural sources (salmon lecithin), and characterized its encapsulation efficiency and release profile. The proposed natural carriers increased the solubility and the bioavailability of curcumin. In addition, various physico-chemical properties of the developed soft nanocarriers with and without curcumin were studied. Nanoliposome-encapsulated curcumin increased the viability and network formation in the culture of primary cortical neurons and decreased the rate of apoptosis.


Ureteral Tunnel Length Versus Ureteral Orifice Configuration In The Determination Of Ureterovesical Junction Competence: A Computer Simulation Model, Carlos A. Villanueva, J. Tong, Carl A. Nelson, Linxia Gu 2018 University of Nebraska Medical Center

Ureteral Tunnel Length Versus Ureteral Orifice Configuration In The Determination Of Ureterovesical Junction Competence: A Computer Simulation Model, Carlos A. Villanueva, J. Tong, Carl A. Nelson, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

Introduction The long-held belief that a ureteral re-implant tunnel should be five times the diameter of the ureter, as proposed by Paquin in 1959, ignores the effect of the orifice on the occurrence of reflux. In 1969, Lyon proposed that the shape of the ureteral orifice (UO) is more important than the intravesical tunnel. However, both theories missed quantitative evidence from principles of physics. The goal of the current study was to test Lyon’s theory through numerical models (i.e. to quantify the sensitivity of ureterovesical junction (UVJ) competence to intravesical tunnel length and to the UO).

Materials and ...


Eigenstrain As A Mechanical Set-Point Of Cells, Shengmao Lin, Marsha C. Lampi, Cynthia A. Reinhart-King, Gary C.P. Tsui, Jian Wang, Carl A. Nelson, Linxia Gu 2018 University of Nebraska-Lincoln

Eigenstrain As A Mechanical Set-Point Of Cells, Shengmao Lin, Marsha C. Lampi, Cynthia A. Reinhart-King, Gary C.P. Tsui, Jian Wang, Carl A. Nelson, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

Cell contraction regulates how cells sense their mechanical environment. We sought to identify the set-point of cell contraction, also referred to as tensional homeostasis. In this work, bovine aortic endothelial cells (BAECs), cultured on substrates with different stiffness, were characterized using traction force microscopy (TFM). Numerical models were developed to provide insights into the mechanics of cell–substrate interactions. Cell contraction was modeled as eigenstrain which could induce isometric cell contraction without external forces. The predicted traction stresses matched well with TFM measurements. Furthermore, our numerical model provided cell stress and displacement maps for inspecting the fundamental regulating mechanism of ...


H.F. Hauff Pruner Cutting Blades, Wyley Stewart 2018 Central Washington University

H.F. Hauff Pruner Cutting Blades, Wyley Stewart

Engineering Technology, Safety and Construction Senior Projects

Apple orchards are a critical component of agriculture in the United States, and keeping the apple trees in the best shape for optimum growth and production is hard work. Neil Hauff, an agriculture industry expert, challenged students at CWU to engineer a power assisted tree pruner. Across the country, apple orchards need pruned every season. The pruning of the trees is strenuous manual labor that requires many man hours. The proposed solution is to create a power assisted tree pruner that would minimize the amount of work needed to trim each tree branch. This project has been separated into three ...


Meniscus Modeling And Emission Studies Of An Ionic Liquid Ferrofluid Electrospray Source Emitting From A Magneto-Electric Instability, Brandon Jackson 2018 Michigan Technological University

Meniscus Modeling And Emission Studies Of An Ionic Liquid Ferrofluid Electrospray Source Emitting From A Magneto-Electric Instability, Brandon Jackson

Dissertations, Master's Theses and Master's Reports

This dissertation presents three studies on the electrospray of ionic liquid ferrofluid. Ionic liquid ferrofluids are electrically conductive super-paramagnetic fluids which respond strongly in the presence of electric and magnetic fields. When a small reservoir of ionic liquid ferrofluid is positioned within a magnetic field, magnetic stresses will deform the fluid interface into a peak. The addition of a strong electric field will further stress the fluid interface until a threshold stress is reached at which point the surface tension cannot contain the combined stresses and a spray of fluid or ions results at the apex. This process is termed ...


Dislocations Interaction Induced Structural Instability In Intermetallic Al2cu, Qing Zhou, Jian Wang, Amit Misra, Ping Huang, Fei Wang, Kewei Xu 2018 Xi'an Jiaotong University

Dislocations Interaction Induced Structural Instability In Intermetallic Al2cu, Qing Zhou, Jian Wang, Amit Misra, Ping Huang, Fei Wang, Kewei Xu

Mechanical & Materials Engineering Faculty Publications

Intermetallic precipitates are widely used to tailor mechanical properties of structural alloys but are often destabilized during plastic deformation. Using atomistic simulations, we elucidate structural instability mechanisms of intermetallic precipitates associated with dislocation motion in a model system of Al2Cu. Interaction of non-coplanar <001> dislocation dipoles during plastic deformation results in anomalous reactions—the creation of vacancies accompanied with climb and collective glide of <001> dislocation associated with the dislocation core change and atomic shuffle—accounting for structural instability in intermetallic Al2Cu. This process is profound with decreasing separation of non-coplanar dislocations and increasing temperature and is likely ...


Digital Commons powered by bepress