Open Access. Powered by Scholars. Published by Universities.®

Computer-Aided Engineering and Design Commons

Open Access. Powered by Scholars. Published by Universities.®

786 Full-Text Articles 1,221 Authors 416,840 Downloads 64 Institutions

All Articles in Computer-Aided Engineering and Design

Faceted Search

786 full-text articles. Page 1 of 32.

Immersogeometric Analysis Of Moving Objects In Incompressible Flows, Songzhe Xu, Fei Xu, Aditya Kommajosula, Ming-Chen Hsu, Baskar Ganapathysubramanian 2019 Iowa State University

Immersogeometric Analysis Of Moving Objects In Incompressible Flows, Songzhe Xu, Fei Xu, Aditya Kommajosula, Ming-Chen Hsu, Baskar Ganapathysubramanian

Mechanical Engineering Publications

We deploy the immersogeometric approach for tracking moving objects. The method immerses objects into non-boundary-fitted meshes and weakly enforces Dirichlet boundary conditions on the object boundaries. The object motion is driven by the integrated surface force and external body forces. A residual-based variational multiscale method is employed to stabilize the finite element formulation for incompressible flows. Adaptively refined quadrature rules are used to better capture the geometry of the immersed boundaries by accurately integrating the intersected background elements. Treatment for the freshly-cleared nodes (i.e. background mesh nodes that are inside the object at one time step, but are in ...


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li 2019 The University of Western Ontario

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis ...


Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz 2019 California Polytechnic State University, San Luis Obispo

Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz

Mechanical Engineering

This report provides a comprehensive description of the research, analysis and design work that The Incompressibles have completed thus far in the senior project process. This document includes all the work that The Incompressibles have completed for the team’s Preliminary Design Review (PDR), Critical Design Review (CDR), the work leading up to the 2019 FPVC competiton and the competition results. This report includes the initial research that the team completed for the fluid power competition, first iterations of designs, final iterations of designs, manufacturing results and processes, and finally testing and results from competition. With a new design for ...


Binary 2d Morphologies Of Polymer Phase Separation: Dataset And Python Toolbox, Viraj Shah, Ameya Joshi, Balaji Sesha Sarath Pokuri, Sambuddha Ghosal, Soumik Sarkar, Baskar Ganapathysubramanian, Chinmay Hegde 2019 Iowa State University

Binary 2d Morphologies Of Polymer Phase Separation: Dataset And Python Toolbox, Viraj Shah, Ameya Joshi, Balaji Sesha Sarath Pokuri, Sambuddha Ghosal, Soumik Sarkar, Baskar Ganapathysubramanian, Chinmay Hegde

Baskar Ganapathysubramanian

Study of the intricate connection between the design of material distributions (also called morphology or microstructure) and the final properties of the material system has been an attractive research theme for material science community. Such analysis provides ability to synthesize the microstructures exhibiting desired properties. This theme encompasses several material systems including porous materials [26], steels and welds [2], composites [14], powder metallurgy [28], 3D printing [22], energy storage devices as batteries [10], and energy converting devices like bulk hetero-junction solar cells [20]. Microstructure-sensitive design has been used to tailor a wide variety of properties including strengths, heat and mass ...


Developing A Workflow To Integrate Tree Inventory Data Into Urban Energy Models, Farzad Hashemi, Breanna L. Marmur, Ulrike Passe, Janette R. Thompson 2019 Iowa State University

Developing A Workflow To Integrate Tree Inventory Data Into Urban Energy Models, Farzad Hashemi, Breanna L. Marmur, Ulrike Passe, Janette R. Thompson

Janette R. Thompson

Building energy simulation is of considerable interest and benefit for architects, engineers, and urban planners. Only recently has it become possible to develop integrated energy models for clusters of buildings in urban areas. Simulating energy consumption of the built environment on a relatively large scale (e.g., such as a neighborhood) will be necessary to obtain more reliable results, since building energy parameters are influenced by characteristics of the nearby environment. Therefore, the construction of a 3-D model of urban built areas with detail of the near-building environment should enhance simulation approaches and provide more accurate results. This paper describes ...


Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey 2019 Olivet Nazarene University

Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey

Honors Program Projects

Fermi National Accelerator Laboratory is sending a 3U CubeSat into LEO to search for a 3.5 keV photon corresponding to the decay of a theorized dark matter particle called the sterile neutrino. The CubeSat will encounter environmental variations while in orbit that can be computed through an orbital analysis using System’s Tool Kit. In order to minimize thermal noise readout, improve optical resolution, and increase bandwidth, the sensors must be kept below 170K while taking data. This temperature is difficult to achieve due to radiation from the Sun and the Earth’s albedo radiation. Through the thermal analysis ...


Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust 2019 University of Tennessee, Knoxville

Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust

Chancellor’s Honors Program Projects

No abstract provided.


Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez 2019 University of Arkansas, Fayetteville

Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez

Mechanical Engineering Undergraduate Honors Theses

In this thesis, research is conducted in the area of soft robotics by building a soft tadpole that can deform with a specific air pressure. The goal is to mimic the motion of an organic tadpole in respect to its S-shaped tail movement. The angle of deformation, derived from material mechanic theories, ranges from 45 to 80 degrees for this type of movement. The design includes a head compartment which acts as a tank to transfer nitrogen pressure and a tail section that receives the said pressure and bends as a result. The tail section was designed with two rows ...


Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo 2019 University of Arkansas, Fayetteville

Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences (ACSPS) is working together with the Mechanical Engineering Department to build a modifiable camera with 3D-printed parts and off-the-shelf parts (sourced from Edmund Optics and Amazon). The design is to be readily changeable, primarily with the 3D printed parts, as to accommodate new ideas and functionalities in the future. Ultimately, the camera should be relatively cheap while maintaining functionality for proposed use cases. Earlier versions of the design will be tested extensively and rapidly updated in the ACSPS labs with benchtop testing. This will involve subjects with both visible and infrared emissions ...


Modeling Of Complex Parts For Industrial Waterjet Cleaning, Braden James 2019 University of Arkansas, Fayetteville

Modeling Of Complex Parts For Industrial Waterjet Cleaning, Braden James

Theses and Dissertations

Industrial high-pressure waterjet cleaning is common to many industries. The modeling in this paper functions inside a collaborative robotic framework for high mix, low volume processes where human robot collaboration is beneficial. Automation of pressure washing is desirable for economic and ergonomic reasons. An automated cleaning system needs path simulation and analysis to give the operator insight into the predicted cleaning performance of the system. In this paper, ablation, the removal of a substrate coating by waterjet, is modeled for robotic cleaning operations. The model is designed to work with complex parts often found in spray cleaning operations, namely parts ...


Cavitation Number As A Function Of Disk Cavitator Radius: A Numerical Analysis Of Natural Supercavitation, Reid Prichard 2019 Liberty University

Cavitation Number As A Function Of Disk Cavitator Radius: A Numerical Analysis Of Natural Supercavitation, Reid Prichard

Senior Honors Theses

Due to the greater viscosity and density of water compared to air, the maximum speed of underwater travel is severely limited compared to other methods of transportation. However, a technology called supercavitation – which uses a disk-shaped cavitator to envelop a vehicle in a bubble of steam – promises to greatly decrease skin friction drag. While a large cavitator enables the occurrence of supercavitation at low velocities, it adds substantial unnecessary drag at higher speeds. Based on CFD results, a relationship between cavitator diameter and cavitation number is developed, and it is substituted into an existing equation relating drag coefficient to cavitation ...


Computer Predictions Of Tunnel Response To Blast, Robert Drummond, Claudia Sun, Andrew Valkenburg, Aaron Freidenberg, Jake Bruhl 2019 USMA

Computer Predictions Of Tunnel Response To Blast, Robert Drummond, Claudia Sun, Andrew Valkenburg, Aaron Freidenberg, Jake Bruhl

West Point Research Papers

Deeply buried bunkers offer a level of protection that is unmatched by conventional, above-ground, construction methods. The construction of the bunker itself, as well as ingress/egress and ventilation for the completed bunker, requires substantial digging. Thus, deeply buried bunkers are usually located within a mountain and accessed via tunnels. In order to better predict the response of tunnels and bunkers to an average design blast load, computer simulations were performed. First, a simplified groundshock numerical code based on an assumed geology and buried depth was used to predict the demand. Then, analytical methods were utilized to design the tunnel ...


Restore-L Satellite Servicing Internship Final Report, Giovanni Campos 2019 CUNY New York City College of Technology

Restore-L Satellite Servicing Internship Final Report, Giovanni Campos

Publications and Research

This paper reviews the Restore-L mission purpose and the necessary research and simulations to meet mission specification for the Propellant Transfer Subsystem (PTS). It is essential the PTS undergoes functionality testing, environmental testing, and calculations to understand the capabilities of the system. For the testing of components from PTS, a proper test setup is required. It is vital for test hardware, such as hoses and valves, to stay in place while the test is being performed. For the test hardware to operate correctly, positioning, orientation, and alignment are critical as well. In addition to the testing, calculations for pressure drop ...


Mechanical Systems That Function Like Living Organisms, Dallas Rice 2019 Kansas State University Libraries

Mechanical Systems That Function Like Living Organisms, Dallas Rice

Kansas State University Undergraduate Research Conference

The purpose of this research was to explore the relationship between the human body and technologically advanced mechanical systems or robotics. More specifically, we looked at how robotics plays a part in prosthetics for other living organisms. During the research we looked at the anatomy of the human body, focusing on the nervous system, bone structure and movements, tissue and muscle relationships, and the neurological response of the brain. We also looked at how the human body reacts and responds to artificial limbs as a way to identify the best ways to introduce unnatural mechanical systems to the body. Different ...


Cpu Cooling Pulse Device For Enhanced Heat Transfer, Hannah Farabee, Noémie L. Iñiguez, Hugo Nunez, Wendy Zwanka 2019 University of South Carolina - Columbia

Cpu Cooling Pulse Device For Enhanced Heat Transfer, Hannah Farabee, Noémie L. Iñiguez, Hugo Nunez, Wendy Zwanka

Senior Theses

Ice Dragon Cooling is a company which researches thermofluids and heat transfer technologies. The company’s present research focuses on HVAC and computer applications, with an emphasis on nanofluid development. To support Ice Dragon’s mission, the company wants a product that enhances heat transfer efficiency in liquid-cooled CPU systems. The product is to be a pulse device which increases the turbulence of a liquid across a computer CPU cooling block, thereby expediting heat transfer away from the CPU.

The needs for Ice Dragon Cooling were determined based on engineering knowledge and industry consultation. After further analysis, it was determined ...


Developing And Testing Of An Upper Limb Exoskeleton For Stroke Patients, Drew Dudley, David Salazar 2019 University of Nebraska at Omaha

Developing And Testing Of An Upper Limb Exoskeleton For Stroke Patients, Drew Dudley, David Salazar

Student Research and Creative Activity Fair

Objective: The main objective of this study was to determine functional and neuromuscular outcomes of stroke patients using their non-preferred hand with and without a 3D printed passive exoskeleton compared to controls using their non-preferred hand with and without the passive exoskeleton. Methods: Adults at least six months post stroke (Stroke, n = 5) and age- and sex- matched healthy controls (Control, n = 5) performed nine trials of a gross motor task while having their brain activity measured. The Fugl-Meyer and “Box and Block” test was used to measure the gross dexterity of the subjects with and without the exoskeleton. Strength ...


Torsional Stiffness Of A Race Car, Reiley A. Schraeger, Cameron Kao, Raymond Deng, Omar Roman 2019 California Polytechnic State University, San Luis Obispo

Torsional Stiffness Of A Race Car, Reiley A. Schraeger, Cameron Kao, Raymond Deng, Omar Roman

Mechanical Engineering

Torsional stiffness plays a major role in any road vehicle. To understand torsional stiffness of a vehicle and make future iterations and improvements, a proper torsional stiffness jig is required to prove accurate and useful data. This report encompasses the new and improved testing jig and potential improvement ideas for more accurate results. With real data result relating to FEA calculations, designers can be confident in the FEA changes to torsional stiffness is accurate and will yield the probably results they desired. This report shows the methodology, manufacturing process and testing procedure to use on any Baja or SAE vehicle ...


Binary 2d Morphologies Of Polymer Phase Separation: Dataset And Python Toolbox, Viraj Shah, Ameya Joshi, Balaji Sesha Sarath Pokuri, Sambuddha Ghosal, Soumik Sarkar, Baskar Ganapathysubramanian, Chinmay Hegde 2019 Iowa State University

Binary 2d Morphologies Of Polymer Phase Separation: Dataset And Python Toolbox, Viraj Shah, Ameya Joshi, Balaji Sesha Sarath Pokuri, Sambuddha Ghosal, Soumik Sarkar, Baskar Ganapathysubramanian, Chinmay Hegde

Mechanical Engineering Publications

Study of the intricate connection between the design of material distributions (also called morphology or microstructure) and the final properties of the material system has been an attractive research theme for material science community. Such analysis provides ability to synthesize the microstructures exhibiting desired properties. This theme encompasses several material systems including porous materials [26], steels and welds [2], composites [14], powder metallurgy [28], 3D printing [22], energy storage devices as batteries [10], and energy converting devices like bulk hetero-junction solar cells [20]. Microstructure-sensitive design has been used to tailor a wide variety of properties including strengths, heat and mass ...


Experimental And Numerical Simulation Of Split Hopkinson Pressure Bar Test On Borosilicate Glass, Mayank K. Bagaria 2019 Michigan Technological University

Experimental And Numerical Simulation Of Split Hopkinson Pressure Bar Test On Borosilicate Glass, Mayank K. Bagaria

Dissertations, Master's Theses and Master's Reports

This study is an extension to the design of ceramic materials component exposed to bullet impact. Owing to the brittle nature of ceramics upon bullet impact, shattered pieces behave as pellets flying with different velocities and directions, damaging surrounding components. Testing to study the behavior of ceramics under ballistic impact can be cumbersome and expensive. Modeling the set-up through Finite Element Analysis (FEA) makes it economical and easy to optimize. However, appropriately incorporating the material in modeling makes laboratory testing essential. Previous efforts have concentrated on simulating crack pattern developed during 0.22 caliber pellet impact on Borosilicate glass. A ...


Quantification Of Papillary Muscle Motion And Mitral Regurgitation After Myocardial Infarction, Connor R. Ferguson 2019 University of Kentucky

Quantification Of Papillary Muscle Motion And Mitral Regurgitation After Myocardial Infarction, Connor R. Ferguson

Theses and Dissertations--Mechanical Engineering

Change in papillary muscle motion as a result of left ventricular (LV) remodeling after posterolateral myocardial infarction is thought to contribute to ischemic mitral regurgitation. A finite element (FE) model of the LV was created from magnetic resonance images acquired immediately before myocardial infarction and 8 weeks later in a cohort of 12 sheep. Severity of mitral regurgitation was rated by two-dimensional echocardiography and regurgitant volume was estimated using MRI. Of the cohort, 6 animals (DC) received hydrogel injection therapy shown to limit ventricular remodeling after myocardial infarction while the control group (MI) received a similar pattern of saline injections ...


Digital Commons powered by bepress