Open Access. Powered by Scholars. Published by Universities.®

Biomechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

647 Full-Text Articles 1,085 Authors 180,325 Downloads 58 Institutions

All Articles in Biomechanical Engineering

Faceted Search

647 full-text articles. Page 1 of 27.

Final Design Report For The Bioburden Pre-Cleaning Device And Dr. Mark Rasnake At The University Of Tennessee Medical Center, Katherine Elizabeth Stiles, Megan Pitz, Kayla Franklin, Simran Dayal, Austin Bullock 2019 University of Tennessee

Final Design Report For The Bioburden Pre-Cleaning Device And Dr. Mark Rasnake At The University Of Tennessee Medical Center, Katherine Elizabeth Stiles, Megan Pitz, Kayla Franklin, Simran Dayal, Austin Bullock

Chancellor’s Honors Program Projects

No abstract provided.


Factors Affecting Patellar Mechanics And Bone Strain In Patients With Crouch Gait, Erika Ramirez 2019 Boise State University

Factors Affecting Patellar Mechanics And Bone Strain In Patients With Crouch Gait, Erika Ramirez

Boise State University Theses and Dissertations

Crouch gait is a musculoskeletal impairment that results in higher than normal stresses at the patellofemoral (PF) joint that can lead to instances of anterior knee pain and loss of ambulation. The impact of commonly implemented surgical procedures to correct for crouch gait can be quantified by evaluating stresses and underlying patellar bone strain during a gait cycle. The aims of this thesis work were (1) to analyze changes in PF mechanics and patellar bone strain between pre- and postoperative conditions; (2) to quantify the variability of predicted patellar strain due to different kinematic/loading profiles or patellar material properties ...


Defining Cell Cluster Size By Dielectrophoretic Capture At An Array Of Wireless Electrodes Of Several Distinct Lengths, Joseph T. Banovetz, Min Li, Darshna Pagariya, Sungu Kim, Baskar Ganapathysubramanian, Robbyn Anand 2019 Iowa State University

Defining Cell Cluster Size By Dielectrophoretic Capture At An Array Of Wireless Electrodes Of Several Distinct Lengths, Joseph T. Banovetz, Min Li, Darshna Pagariya, Sungu Kim, Baskar Ganapathysubramanian, Robbyn Anand

Chemistry Publications

Clusters of biological cells play an important role in normal and disease states, such as in the release of insulin from pancreatic islets and in the enhanced spread of cancer by clusters of circulating tumor cells. We report a method to pattern cells into clusters having sizes correlated to the dimensions of each electrode in an array of wireless bipolar electrodes (BPEs). The cells are captured by dielectrophoresis (DEP), which confers selectivity, and patterns cells without the need for physical barriers or adhesive interactions that can alter cell function. Our findings demonstrate that this approach readily achieves fine control of ...


In Silico Design Of Crop Ideotypes Under A Wide Range Of Water Availability, Talukder Z. Jubery, Baskar Ganapathysubramanian, Matthew E. Gilbert, Daniel Attinger 2019 Iowa State University

In Silico Design Of Crop Ideotypes Under A Wide Range Of Water Availability, Talukder Z. Jubery, Baskar Ganapathysubramanian, Matthew E. Gilbert, Daniel Attinger

Baskar Ganapathysubramanian

Given the changing climate and increasing impact of agriculture on global resources, it is important to identify phenotypes which are global and sustainable optima. Here, an in silico framework is constructed by coupling evolutionary optimization with thermodynamically sound crop physiology, and its ability to rationally design phenotypes with maximum productivity is demonstrated, within well‐defined limits on water availability. Results reveal that in mesic environments, such as the North American Midwest, and semi‐arid environments, such as Colorado, phenotypes optimized for maximum productivity and survival under drought are similar to those with maximum productivity under irrigated conditions. In hot and ...


In Silico Design Of Crop Ideotypes Under A Wide Range Of Water Availability, Talukder Z. Jubery, Baskar Ganapathysubramanian, Matthew E. Gilbert, Daniel Attinger 2019 Iowa State University

In Silico Design Of Crop Ideotypes Under A Wide Range Of Water Availability, Talukder Z. Jubery, Baskar Ganapathysubramanian, Matthew E. Gilbert, Daniel Attinger

Daniel Attinger

Given the changing climate and increasing impact of agriculture on global resources, it is important to identify phenotypes which are global and sustainable optima. Here, an in silico framework is constructed by coupling evolutionary optimization with thermodynamically sound crop physiology, and its ability to rationally design phenotypes with maximum productivity is demonstrated, within well‐defined limits on water availability. Results reveal that in mesic environments, such as the North American Midwest, and semi‐arid environments, such as Colorado, phenotypes optimized for maximum productivity and survival under drought are similar to those with maximum productivity under irrigated conditions. In hot and ...


A Review Of Dissolved Oxygen Concentration Measurement Methods For Biological Fermentations, Samuel T. Jones, Theodore J. Heindel 2019 Iowa State University

A Review Of Dissolved Oxygen Concentration Measurement Methods For Biological Fermentations, Samuel T. Jones, Theodore J. Heindel

Theodore J. Heindel

Dissolved oxygen levels in biological processes depend on the biological, chemical, and physical properties of the process being monitored. The analysis of dissolved oxygen concentration is a key test for process control and optimization. A review of the measurement methods for dissolved oxygen concentrations will be presented in this paper. Included in this review are the chemical, volumetric, tubing, electrochemical electrode, and optode methods. Advantages and disadvantages of these methods are discussed and key considerations for their use are summarized.


Mechanical And Tribological Behaviour Of Treated And Untreated Moringa Oleifera Pods Fiber Reinforced Epoxy Polymer Composite For Packaging Applications, prakash sampath, Senthil Kumar V.S Dr 2019 Anna University

Mechanical And Tribological Behaviour Of Treated And Untreated Moringa Oleifera Pods Fiber Reinforced Epoxy Polymer Composite For Packaging Applications, Prakash Sampath, Senthil Kumar V.S Dr

Journal of Applied Packaging Research

Researchers now focus on the use of natural fiber polymer composites materials for packing applications. This attention is due to their low cost and renewable characteristics. Fabrication of composites with the use of renewable resources has many benefits of alternating from an appropriate management and reduction in industrial wastages, ecofriendly behaviour to cost effectiveness. The artificial fibers in packing industries can be replaced by natural fibers in the areas where stiffness and high strength are not the primary requirement. In the last decade the use of Natural fibers in the place of artificial fibers for reinforcements in epoxy resin matrix ...


Efficacy Of Assistive Devices Produced With Additive Manufacturing, James Pierce 2019 University of Nebraska at Omaha

Efficacy Of Assistive Devices Produced With Additive Manufacturing, James Pierce

Student Research and Creative Activity Fair

Despite the frequency of musculoskeletal injuries such as sprains, broken bones and torn ligaments1, treatment options are often costly, time-consuming and ill-fitted.2,3 Additive manufacturing (“3D-printing) allows for the production of highly-customized and inexpensive assistive devices4, which suggests potential efficacy in the prescription of splints and casts for musculoskeletal injury.3 In the present study, a parametric, customizable splint/cast was created using a computer-aided design (CAD) package (Fusion 360, Autodesk, San Rafael, CA, USA) and produced with low-cost, desktop 3D printing (Ultimaker 2+ Extended, Ultimaker, Geldermalsen, Netherlands). Fitting of the devices was performed on five healthy ...


Placenta‐On‐A‐Chip: In Vitro Study Of Caffeine Transport Across Placental Barrier Using Liquid Chromatography Mass Spectrometry, Rajeendra L. Pemathilaka, Jeremy D. Caplin, Saurabh S. Aykar, Reza Montazami, Nicole N. Hashemi 2019 Iowa State University

Placenta‐On‐A‐Chip: In Vitro Study Of Caffeine Transport Across Placental Barrier Using Liquid Chromatography Mass Spectrometry, Rajeendra L. Pemathilaka, Jeremy D. Caplin, Saurabh S. Aykar, Reza Montazami, Nicole N. Hashemi

Mechanical Engineering Publications

Due to the particular structure and functionality of the placenta, most current human placenta drug testing methods are limited to animal models, conventional cell testing, and cohort/controlled testing. Previous studies have produced inconsistent results due to physiological differences between humans and animals and limited availability of human and/or animal models for controlled testing. To overcome these challenges, a placenta‐on‐a‐chip system is developed for studying the exchange of substances to and from the placenta. Caffeine transport across the placental barrier is studied because caffeine is a xenobiotic widely consumed on a daily basis. Since a fetus ...


The Influence Of Asphalt Ageing On Induction Healing Effect On Porous Asphalt Concrete, Shi XU, Xueyan Liu, Amir Tabakovic, Erik Schlangen 2019 Delft University of Technology

The Influence Of Asphalt Ageing On Induction Healing Effect On Porous Asphalt Concrete, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen

Articles

Induction healing is a proven technology which is able to improve the self‐healing capacity of asphalt concrete. Healing is achieved via electromagnetic current produced by passing induction machine, where steel asphalt constituents heat up which in turn soften the bitumen in the asphalt layer, allowing it to flow and close cracks, repairing the damage. This paper reports on the study which investigated the influence of ageing on the healing capacity of Porous Asphalt (PA) concrete. Porous Asphalt concrete mix was prepared first, then subjected to an accelerated (laboratory) ageing process using a ventilated oven. In order to further evaluate ...


Engineering A Bacterial Flagella Forest For Sensing And Actuation – A Progress Report, Xihe Liu, Shulin Ye, Isaac Oti, Lauren Metzinger 2019 Southern Methodist University

Engineering A Bacterial Flagella Forest For Sensing And Actuation – A Progress Report, Xihe Liu, Shulin Ye, Isaac Oti, Lauren Metzinger

SMU Journal of Undergraduate Research

Flagella can be used to make magnetically-controlled microfluidic and nanoscale devices for biomedical applications in both vitro and vivo environments. They are capable of operating with high precision on the cellular and subcellular level. So far, scientists and engineers have successfully used monolithic inorganic materials or photoactive polymers [1] to mimic the helical bacterial flagella whose rotary-propulsion mechanism effectively overcomes the dominant viscous forces that prevail in a low Reynolds-number environment. Here, we focus on bacterial flagella and their rotary motion. The bacterial flagellum is an ideal biomaterial for constructing self-propelling nanoswimmers because it can reversibly change its geometry in ...


Analyzing Moment Arm Profiles In A Full-Muscle Rat Hindlimb Model, Fletcher Young, Christian Rode, Alexander Hunt, Roger Quinn 2019 Case Western Reserve University

Analyzing Moment Arm Profiles In A Full-Muscle Rat Hindlimb Model, Fletcher Young, Christian Rode, Alexander Hunt, Roger Quinn

Mechanical and Materials Engineering Faculty Publications and Presentations

Understanding the kinematics of a hindlimb model is a fundamental aspect of modeling coordinated locomotion. This work describes the development process of a rat hindlimb model that contains a complete muscular system and incorporates physiological walking data to examine realistic muscle movements during a step cycle. Moment arm profiles for selected muscles are analyzed and presented as the first steps to calculating torque generation at hindlimb joints. A technique for calculating muscle moment arms from muscle attachment points in a three-dimensional (3D) space has been established. This model accounts for the configuration of adjacent joints, a critical aspect of biarticular ...


Quantification Of Myocardial Mechanics In Left Ventricles Under Inotropic Stimulation And In Healthy Right Ventricles Using 3d Dense Cmr, Zhan-Qiu Liu 2019 University of Kentucky

Quantification Of Myocardial Mechanics In Left Ventricles Under Inotropic Stimulation And In Healthy Right Ventricles Using 3d Dense Cmr, Zhan-Qiu Liu

Theses and Dissertations--Mechanical Engineering

Statistical data from clinical studies indicate that the death rate caused by heart disease has decreased due to an increased use of evidence-based medical therapies. This includes the use of magnetic resonance imaging (MRI), which is one of the most common non-invasive approaches in evidence-based health care research. In the current work, I present 3D Lagrangian strains and torsion in the left ventricle of healthy and isoproterenol-stimulated rats, which were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) imaging. With the implementation of the 12-segment model, a detailed profile of regional cardiac mechanics was reconstructed for ...


Quantification Of Papillary Muscle Motion And Mitral Regurgitation After Myocardial Infarction, Connor R. Ferguson 2019 University of Kentucky

Quantification Of Papillary Muscle Motion And Mitral Regurgitation After Myocardial Infarction, Connor R. Ferguson

Theses and Dissertations--Mechanical Engineering

Change in papillary muscle motion as a result of left ventricular (LV) remodeling after posterolateral myocardial infarction is thought to contribute to ischemic mitral regurgitation. A finite element (FE) model of the LV was created from magnetic resonance images acquired immediately before myocardial infarction and 8 weeks later in a cohort of 12 sheep. Severity of mitral regurgitation was rated by two-dimensional echocardiography and regurgitant volume was estimated using MRI. Of the cohort, 6 animals (DC) received hydrogel injection therapy shown to limit ventricular remodeling after myocardial infarction while the control group (MI) received a similar pattern of saline injections ...


Exoskeleton Leg Brace, Aaron Indermuhle, Magomed Kasumov, Cevat Bagcioglu, Lucas Battaglia 2019 The University of Akron

Exoskeleton Leg Brace, Aaron Indermuhle, Magomed Kasumov, Cevat Bagcioglu, Lucas Battaglia

Williams Honors College, Honors Research Projects

This report details the design process of a lower limb exoskeleton leg brace for elderly people with walking disabilities or others with disabilities that limit mobility. While there are other similar products on the market, the general design can be improved and these improvements have been implemented into the design presented within. Among these improvements are progress in efficiency, weight, user comfort, and cost. The results of the study are the design of a novel leg brace that improves on existing designs in each of these areas.

Our design solution incorporates the use of a single leg brace with no ...


Design And Mechanical Characterization Of 3d Printed Gradient Porosity Poly(Propylene Fumarate) Scaffolds, Andrea Felicelli 2019 The University of Akron

Design And Mechanical Characterization Of 3d Printed Gradient Porosity Poly(Propylene Fumarate) Scaffolds, Andrea Felicelli

Williams Honors College, Honors Research Projects

Worldwide incidence of bone disorders and conditions, an already prevalent problem, is expected to double by 2020 from the rate in 2013 due to factors such as higher life expectancies and lower levels of physical activity. Every year in the United States, over half a million patients receive bone defect repairs, with costs greater than $2.5 billion. Current repairs are typically done with bone grafts, which are often costly and can result in added complications in the donor surgical site. Tissue engineering, a growing field that seeks to assist and enhance tissue defect repairs through the use of synthetic ...


Developing A Testing Instrument To Evaluate The Performance Of 3d-Printed Body-Powered Prosthetic Hands, Araz Al-dawoodi 2019 Minnesota State University, Mankato

Developing A Testing Instrument To Evaluate The Performance Of 3d-Printed Body-Powered Prosthetic Hands, Araz Al-Dawoodi

All Theses, Dissertations, and Other Capstone Projects

A 3D printed prosthetic hand is an open source technology that became a good substitution for many products in the market. For many reasons, Low-cost, easy made / easy build. As an open source product, 3D printed prosthetic designs are available to anyone around the world, a good option for young children because they need to have a new prosthetic more frequent until they reach the adulthood age. Most families cannot pay a thousand dollars technology. From the research, it found that that there are not enough studies cover the open source wrist body-powered prosthetic. Other studies covered products used by ...


In Silico Design Of Crop Ideotypes Under A Wide Range Of Water Availability, Talukder Z. Jubery, Baskar Ganapathysubramanian, Matthew E. Gilbert, Daniel Attinger 2019 Iowa State University

In Silico Design Of Crop Ideotypes Under A Wide Range Of Water Availability, Talukder Z. Jubery, Baskar Ganapathysubramanian, Matthew E. Gilbert, Daniel Attinger

Mechanical Engineering Publications

Given the changing climate and increasing impact of agriculture on global resources, it is important to identify phenotypes which are global and sustainable optima. Here, an in silico framework is constructed by coupling evolutionary optimization with thermodynamically sound crop physiology, and its ability to rationally design phenotypes with maximum productivity is demonstrated, within well‐defined limits on water availability. Results reveal that in mesic environments, such as the North American Midwest, and semi‐arid environments, such as Colorado, phenotypes optimized for maximum productivity and survival under drought are similar to those with maximum productivity under irrigated conditions. In hot and ...


3d Printed Bioreactor With Optimized Stimulations For Ex-Vivo Bone Tissue Culture, Anirban Chakraborty 2019 South Dakota State University

3d Printed Bioreactor With Optimized Stimulations For Ex-Vivo Bone Tissue Culture, Anirban Chakraborty

Electronic Theses and Dissertations

Motivation: Long term tissue survivability ex-vivo can greatly facilitate research on the influence of external stimulus (loading, radiation, microgravity) on the tissue, including mechanisms of disease transmission and subsequent drug discoveries. Bioreactors (used to culture living tissue ex-vivo) can be a valuable tool to study cell activity during physiological processes by mimicking their in-vivo native 3D environment.
Objective Statement: We have developed a compact, 3D printed bioreactor equipped with both continuous flow-perfusion and dynamic mechanical-loading stimulations, capable of maintaining ex-vivo viability of swine cancellous bone cores over a long period. Qualitative study of the cultured cores (in terms of material ...


Single Arm Recumbent Bicycle, Alexander Borsotti, Ryan Westermann, Sean Liston 2018 California Polytechnic State University, San Luis Obispo

Single Arm Recumbent Bicycle, Alexander Borsotti, Ryan Westermann, Sean Liston

Mechanical Engineering

The goal of this report is to outline and cover the scope of work for the Single Arm Recumbent Bicycle Senior Project. The report will give an introduction of the problem, a background of the existing research or products relating to our project, the objectives of our project, our project management plan, our final design, manufacturing, testing, our project management, and final recommendations for improving the final design. The team is being supported by the Quality of Life Program, a non-profit organization that works to improve the lives of those injured in duty while serving our nation.

Up until now ...


Digital Commons powered by bepress