Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

3,229 Full-Text Articles 1,580 Authors 4,649,888 Downloads 68 Institutions

All Articles in Applied Mechanics

Faceted Search

3,229 full-text articles. Page 1 of 30.

Investigation Of Nondestructive Testing Methods For Friction Stir Welding, Hossein Taheri, Margaret Kilpatrick, Matthew Norvalls, Warren Harper, Lucas Koester, Timothy Bigelow, Leonard J. Bond 2019 Georgia Southern University

Investigation Of Nondestructive Testing Methods For Friction Stir Welding, Hossein Taheri, Margaret Kilpatrick, Matthew Norvalls, Warren Harper, Lucas Koester, Timothy Bigelow, Leonard J. Bond

Timothy A. Bigelow

Friction stir welding is a method of materials processing that enables the joining of similar and dissimilar materials. The process, as originally designed by The Welding Institute (TWI), provides a unique approach to manufacturing—where materials can be joined in many designs and still retain mechanical properties that are similar to, or greater than, other forms of welding. This process is not free of defects that can alter, limit, and occasionally render the resulting weld unusable. Most common amongst these defects are kissing bonds, wormholes and cracks that are often hidden from visual inspection. To identify these defects, various nondestructive ...


Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz 2019 California Polytechnic State University, San Luis Obispo

Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz

Mechanical Engineering

This report provides a comprehensive description of the research, analysis and design work that The Incompressibles have completed thus far in the senior project process. This document includes all the work that The Incompressibles have completed for the team’s Preliminary Design Review (PDR), Critical Design Review (CDR), the work leading up to the 2019 FPVC competiton and the competition results. This report includes the initial research that the team completed for the fluid power competition, first iterations of designs, final iterations of designs, manufacturing results and processes, and finally testing and results from competition. With a new design for ...


Investigation Of Nondestructive Testing Methods For Friction Stir Welding, Hossein Taheri, Margaret Kilpatrick, Matthew Norvalls, Warren Harper, Lucas Koester, Timothy Bigelow, Leonard J. Bond 2019 Georgia Southern University

Investigation Of Nondestructive Testing Methods For Friction Stir Welding, Hossein Taheri, Margaret Kilpatrick, Matthew Norvalls, Warren Harper, Lucas Koester, Timothy Bigelow, Leonard J. Bond

Electrical and Computer Engineering Publications

Friction stir welding is a method of materials processing that enables the joining of similar and dissimilar materials. The process, as originally designed by The Welding Institute (TWI), provides a unique approach to manufacturing—where materials can be joined in many designs and still retain mechanical properties that are similar to, or greater than, other forms of welding. This process is not free of defects that can alter, limit, and occasionally render the resulting weld unusable. Most common amongst these defects are kissing bonds, wormholes and cracks that are often hidden from visual inspection. To identify these defects, various nondestructive ...


Modeling And Computation Of The Maximum Braking Energy Speed For Transport Category Airplanes, Nihad E. Daidzic 2019 AAR Aerospace Consulting, LLC

Modeling And Computation Of The Maximum Braking Energy Speed For Transport Category Airplanes, Nihad E. Daidzic

Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

Transport-category or FAR/CS 25 certified airplanes may occasionally become braking energy capacity limited. Such limitation may exist when heavy airplanes are departing airports at high-density altitudes, on relatively long runways, and/or possibly with some tailwind component. A maximum braking energy VMBE speed exists which may limit the maximum allowable takeoff decision/action speed V1. The ever-existing possibility of high-speed rejected takeoff in such conditions may also limit the airplane gross weight for declared available distances. To gain deeper insights and acquire better understanding of the topic, a theoretical model of the maximum braking energy and the related VMBE ...


Determination Of Rejected Landing Roll Runway Point-Of-No-Return And Go-Around In Transport Category Airplanes, Nihad E. Daidzic, Ph.D., Sc.D. 2019 AAR Aerospace Consulting, LLC

Determination Of Rejected Landing Roll Runway Point-Of-No-Return And Go-Around In Transport Category Airplanes, Nihad E. Daidzic, Ph.D., Sc.D.

Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

The decelerate-accelerate-takeoff maneuver in transport category airplanes has been discussed. Mathematical model based on total energy conservation has been used to calculate the rejected landing point-of-no-return on a runway which will still enable the airplane to safely execute go-around and achieve regulatory screen heights and takeoff safety speeds. After this point has been exceeded or below the point-of-no-return speed no go-around should ever be considered. Landing long and fast and/or decelerating on slippery runways may very well result in an overrun which could be prevented if the go-around is attempted before reaching this critical runway point. The point-of-no-return on ...


A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic 2019 AAR Aerospace Consulting, LLC

A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplane’s bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling ...


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller 2019 University of Arkansas, Fayetteville

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and ...


Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust 2019 University of Tennessee, Knoxville

Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust

Chancellor’s Honors Program Projects

No abstract provided.


Final Design Report For The Bioburden Pre-Cleaning Device And Dr. Mark Rasnake At The University Of Tennessee Medical Center, Katherine Elizabeth Stiles, Megan Pitz, Kayla Franklin, Simran Dayal, Austin Bullock 2019 University of Tennessee

Final Design Report For The Bioburden Pre-Cleaning Device And Dr. Mark Rasnake At The University Of Tennessee Medical Center, Katherine Elizabeth Stiles, Megan Pitz, Kayla Franklin, Simran Dayal, Austin Bullock

Chancellor’s Honors Program Projects

No abstract provided.


Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez 2019 University of Arkansas, Fayetteville

Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez

Mechanical Engineering Undergraduate Honors Theses

In this thesis, research is conducted in the area of soft robotics by building a soft tadpole that can deform with a specific air pressure. The goal is to mimic the motion of an organic tadpole in respect to its S-shaped tail movement. The angle of deformation, derived from material mechanic theories, ranges from 45 to 80 degrees for this type of movement. The design includes a head compartment which acts as a tank to transfer nitrogen pressure and a tail section that receives the said pressure and bends as a result. The tail section was designed with two rows ...


Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr. 2019 Linfield College

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr.

Senior Theses

Properties of several working magnetic coupled rotors have been measured and their performance compared to theoretical models. Axial magnetic couplers allow rotors to work within harsh environments, without the need for seals, proper alignment, or overload protection on a motor. The influence of geometrical parameters, such as distance from the center of the rotors, polarity arrangement, and the number of dipole pairs were experimentally tested. These results can be used to improve rotor designs, to increase strength and efficiency.


Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai 2019 Purdue University Northwest

Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai

ASEE IL-IN Section Conference

Application of Computational Tools to Spaghetti-Based Truss Design

Statics and Strength of Materials are two foundational courses for Mechanical/Civil Engineering. In order to assist students in better understanding and applying concepts to a meaningful design task, SolidWorks and theoretical calculation were used for a spaghetti-bridge design contest with the constraints of given maximum weight and allowable support-material weight. As the first step of this iterative designing process, both extrude feature and structural member were introduced to model planar bridge trusses. Then SolidWorks’ Statics module was used to run FEA analysis of the structural performance in efforts to optimize the ...


Analysis Of Dynamic Behaviour Of A Tensioned Carbon Nanotube In Thermal And Pressurized Environments, Ahmed Yinusa, Gbeminiyi Sobamowo 2019 University of Lagos

Analysis Of Dynamic Behaviour Of A Tensioned Carbon Nanotube In Thermal And Pressurized Environments, Ahmed Yinusa, Gbeminiyi Sobamowo

Karbala International Journal of Modern Science

In this paper, the dynamic behaviour of a tensioned single-walled carbon nanotubes (SWCNT) in thermal and pressurized environments is investigated analytically. With the applications of Bernoulli-Euler and thermal elasticity mechanics theories, the governing equation of motion are developed and solved using Laplace and Fourier transforms. The results of the close form solution in this work are in excellent agreements with past results in literature. From the parametric studies, it is established that as the magnitude of the pressure distribution at the surface increases, the deflection associated with the nanotube increases at any mode of vibration. However, a corresponding increase in ...


Investigation Of Design, Manufacture, Analysis, And Test Of A Composite Connecting Rod Under Compression, Thomas Juhl Rohrbach 2019 California Polytechnic State University, San Luis Obispo

Investigation Of Design, Manufacture, Analysis, And Test Of A Composite Connecting Rod Under Compression, Thomas Juhl Rohrbach

Master's Theses and Project Reports

Composite materials hold great potential for the replacement of traditional materials in machines utilized on a daily basis. One such example is within an engine block assembly where massive components inherently reduce the efficiency of the system they constitute. By replacing metal elements such as connecting rods, cylinder caps, or a crank shaft with composite alternatives, a significant increase in performance may be achieved with respect to mechanical strength, thermal stability, and durability, while also reducing mass. Exploration of this technology applied to a connecting rod geometry was investigated through a combination of process development, manufacturing, numerical analysis and testing ...


Quantification Of Myocardial Mechanics In Left Ventricles Under Inotropic Stimulation And In Healthy Right Ventricles Using 3d Dense Cmr, Zhan-Qiu Liu 2019 University of Kentucky

Quantification Of Myocardial Mechanics In Left Ventricles Under Inotropic Stimulation And In Healthy Right Ventricles Using 3d Dense Cmr, Zhan-Qiu Liu

Theses and Dissertations--Mechanical Engineering

Statistical data from clinical studies indicate that the death rate caused by heart disease has decreased due to an increased use of evidence-based medical therapies. This includes the use of magnetic resonance imaging (MRI), which is one of the most common non-invasive approaches in evidence-based health care research. In the current work, I present 3D Lagrangian strains and torsion in the left ventricle of healthy and isoproterenol-stimulated rats, which were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) imaging. With the implementation of the 12-segment model, a detailed profile of regional cardiac mechanics was reconstructed for ...


Fatigue Tester, Nicholas Fazio 2019 The University of Akron

Fatigue Tester, Nicholas Fazio

Williams Honors College, Honors Research Projects

The purpose of this project is to combine all my experience, knowledge and skills that I’ve acquired over the years as a Mechanical Engineering Technology student to completely design and build a fatigue tester. This will give me valuable experience in the process of designing and assembling a product and give me a great example to add to my portfolio. The tester will be completed through a process of researching design and modeling. Once everything is properly calculated and designed the parts that can be fabricated will. The rest will be ordered and then everything will be assembled. Upon ...


Recumbent Bicycle Balancing Aid, James Hager 2019 The University of Akron

Recumbent Bicycle Balancing Aid, James Hager

Williams Honors College, Honors Research Projects

For our senior design project, our team will be consulting to create a balancing aid system intended for the recumbent bicycle shown below in Figure 1. The owner of the bicycle is Robert Henderson, a former United States Navy sailor from Northeast Ohio who picked up biking and skiing while he was stationed in Maine in the late 80’s. While there, he took to the mountains on the rugged terrain and brought this passion of biking back home to share with his wife, Johanna once he completed his service to his country. Biking became an integral part of the ...


Reactive Archey Target Design Team "Mimic", Brandon Croyle, Jacob Boss, David Rodgers, Austin Wivell 2019 The University of Akron

Reactive Archey Target Design Team "Mimic", Brandon Croyle, Jacob Boss, David Rodgers, Austin Wivell

Williams Honors College, Honors Research Projects

This design project will aim to provide archery hunters with a platform to simulate shooting at string jumping deer. String jumping refers to a spooked deer hearing the snap of a bow string and instintivly ducking up to ten inches. This often results in wounded or missed deer. We will design and build a control system that uses the sound of a bow string as a trigger to operate a mechanical target system. A sound sensor will mimic a deer’s hearing in close range hunting and then send a signal to the mechanical system to replicate the dropping motion ...


Stair Climbing Hand Truck, James McPherson 2019 Central Washington University

Stair Climbing Hand Truck, James Mcpherson

All Undergraduate Projects

Abstract

Getting a heavy object up a flight of stairs usually requires a team of two or more people. Even with a team of people, the task is often still difficult, dangerous, and possibly insurmountable by one person. This problem is especially prevalent in for those who are moving into apartment complexes. Most apartment complexes have many buildings with two or more floors of living quarters, and elevators are often missing. This project sought to offer a solution to this problem. The solution in question; a motorized hand-truck with 2, trigonal planar pinwheels in place of the stock wheels. The ...


Autojack - Hydraulic Powertrain System, Tyce Vu 2019 Central Washington University

Autojack - Hydraulic Powertrain System, Tyce Vu

All Undergraduate Projects

A primary problem for mechanics and automotive enthusiasts is the risk associated with lifting and securing a vehicle with conventional jack stands. Often times, improper jack-stand installation results in the vehicle collapsing unexpectedly, causing injury and/or death. This problem can be minimized through the application of a newly re-designed vehicle lifting system. The conventional method for lifting cars is time consuming and can be unsafe in many circumstances. A better, safer, and more efficient lift design was needed; the AutoJack. The approach of the AutoJack design was entirely focused on the safety of lifting a vehicle. Safety was improved ...


Digital Commons powered by bepress