Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

565 Full-Text Articles 1,124 Authors 165,236 Downloads 64 Institutions

All Articles in Semiconductor and Optical Materials

Faceted Search

565 full-text articles. Page 1 of 23.

Influence Of Naoh Concentration On Transfer Process Of Graphene, Francisco Saldana, Chengyu Wen, George Patrick Watson 2019 Singh Center for Nanotechnology

Influence Of Naoh Concentration On Transfer Process Of Graphene, Francisco Saldana, Chengyu Wen, George Patrick Watson

Protocols and Reports

The process of transferring a monolayer of graphene using two different concentrations of sodium hydroxide (NaOH) solution unto a silicon dioxide (SiO2) coated Si chip using electrochemistry was performed. The transfer process is crucial for the delamination of a continuous graphene monolayer film from copper foil. After examining and inspecting the integrity of the graphene monolayer, it was observed that the lower concentration to NaOH led to slower rate of hydrogen bubble generation; this condition was found to be less destructive and yielded a graphene film with fewer visible tears.


Graphene Channels Interfaced With Distributed Quantum Dots, Xin Miao 2019 New Jersey Institute of Technology

Graphene Channels Interfaced With Distributed Quantum Dots, Xin Miao

Dissertations

Previous research has elucidated the remarkable electrical and optical characteristics of graphene and pointed to the various applications of graphene-based devices. One of such applications is electro-optical graphene-based elements. In this work, the optoelectronic properties of field-effect transistors are explored. These are composed of surface graphene guides, which are interfaced with an array of individual semiconductor quantum dots. The graphene guide also serves as a channel for the field-effect transistor (FET) while the dots provide for fluorescence markers. They may be placed either within the capacitor formed between the graphene and the gate electrode, or on top of the graphene ...


Triple-Junction Solar Cells : In Parallel., Levi C Mays 2019 University of Louisville

Triple-Junction Solar Cells : In Parallel., Levi C Mays

Electronic Theses and Dissertations

This paper looks into the current inefficiency of solar cells and attempts a few alternative solar cell structures in order to provide a more effective source of renewable energy. Currently, multi-junction solar cells are being developed to capture the sun’s light more efficiently. One of the ideas in this paper is to add a window to see if the addition of such a layer into a junction will increase the voltage while maintaining nearly the same current output. Central to this paper is the rearranging of the conducting layers of the multi-junction cell so that the junctions can be ...


Pairing Toroidal And Magnetic Dipole Resonances In Elliptic Dielectric Rod Metasurfaces For Reconfigurable Wavefront Manipulation In Reflection, Odysseas Tsilipakos, Anna C. Tasolamprou, Thomas Koschny, Maria Kafesaki, Eleftherios N. Economou, Paul C. Canfield, Costas M. Soukoulis 2019 Institute of Electronic Structure and Laser, FORTH

Pairing Toroidal And Magnetic Dipole Resonances In Elliptic Dielectric Rod Metasurfaces For Reconfigurable Wavefront Manipulation In Reflection, Odysseas Tsilipakos, Anna C. Tasolamprou, Thomas Koschny, Maria Kafesaki, Eleftherios N. Economou, Paul C. Canfield, Costas M. Soukoulis

Paul C. Canfield

A novel approach for reconfigurable wavefront manipulation with gradient metasurfaces based on permittivity‐modulated elliptic dielectric rods is proposed. It is shown that the required 2π phase span in the local electromagnetic response of the metasurface can be achieved by pairing the lowest magnetic dipole Mie resonance with a toroidal dipole Mie resonance, instead of using the lowest two Mie resonances corresponding to fundamental electric and magnetic dipole resonances as customarily exercised. This approach allows for the precise matching of both the resonance frequencies and quality factors. Moreover, the accurate matching is preserved if the rod permittivity is varied, allowing ...


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li 2019 The University of Western Ontario

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis ...


Maximizing Poly(3-Butylthiophene-2,5-Diyl) Electrical Conductivity By Maximizing Transcrystal Growth, Edward Alexander Bicknell 2019 California Polytechnic State University, San Luis Obispo

Maximizing Poly(3-Butylthiophene-2,5-Diyl) Electrical Conductivity By Maximizing Transcrystal Growth, Edward Alexander Bicknell

Materials Engineering

Polymers are generally considered electrical insulators. Despite this, research in the mid 1970’s found that polymers consisting of a conjugated backbone structure could become electrically conductive upon doping.1 The conjugated polymer analyzed for this project was poly(3-butylthiophene-2,5-diyl) (P3BT). Transcrystals have been found as a way to promote electrical conductivity through mechanisms including π bond atomic orbital overlap and electron mobility.2 In theory, maximizing transcrystal length would also maximize P3BT electrical conductivity, increasing its applicable use in electronic devices. The goal of this project was to determine a methodological way to maximize P3BT electrical conductivity by ...


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin 2019 Union College - Schenectady, NY

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites ...


Performance Enhancement Of Ssi-Leds And Geometrically Confinement Of Lighting Dots By Using Patterned Wafer Approaches, Shengli Wu, Yiwei Liu, Xiaoning Zhang, Can Yang, Lingguang Liu, Yaogong Wang, Gang Niu 2019 Key Laboratory for Physical Electronics and Devices of the MOE, Xi’an Jiaotong University, China

Performance Enhancement Of Ssi-Leds And Geometrically Confinement Of Lighting Dots By Using Patterned Wafer Approaches, Shengli Wu, Yiwei Liu, Xiaoning Zhang, Can Yang, Lingguang Liu, Yaogong Wang, Gang Niu

Semiconductor Technology for Ultra Large Scale Integrated Circuits and Thin Film Transistors VII

Solid state incandescent light emitting devices (SSI-LEDs) were first demonstrated in 2013 by Kuo’s group, which have the metal-oxide-semiconductor structure and emit white light directly1. The conductive filaments (CFs) through CAFM figures out that Si wafer has a significant impact on the device performance2, 3, multiplayer dielectric layers structure have also been study to enhance the light emission4. We demonstrate two approaches to improve the performance of SSI-LEDs by using patterned wafer in this work.

Please click Additional Files below to see the full abstract.


Ulsi And Tft Technologies In Industry, Research And Higher Education In France: An Evolution Towards Innovation Resulting From Close And Sustainable Interaction, Olivier Bonnaud 2019 University of Rennes 1, GIP-CNFM

Ulsi And Tft Technologies In Industry, Research And Higher Education In France: An Evolution Towards Innovation Resulting From Close And Sustainable Interaction, Olivier Bonnaud

Semiconductor Technology for Ultra Large Scale Integrated Circuits and Thin Film Transistors VII

The semiconductor industry and associated microelectronic production began in France in the early 1980s as part of the national microelectronics plan launched by the French government to meet the needs of new economic sectors that are heavy users of microelectronic products. Indeed, microelectronic circuits, devices and systems are the key elements of the information technology field, which includes computer and communications capabilities, and application fields such as aerospace, transport, and energy, mainly. Several new technologies had to be developed, corresponding to the first advent of communication tools such as Minitel (ancestor of the web) or credit cards, which then underwent ...


Conference Program, Yue Kuo, Junichi Murota, Yasuhiro Fukunaka, Yukiharu Uraoka 2019 Texas A&M University, USA

Conference Program, Yue Kuo, Junichi Murota, Yasuhiro Fukunaka, Yukiharu Uraoka

Semiconductor Technology for Ultra Large Scale Integrated Circuits and Thin Film Transistors VII

No abstract provided.


Modeling Of Vapor Sorption In Nanoparticle Chemiresistors, Alexandra Oliveira 2019 University of Connecticut

Modeling Of Vapor Sorption In Nanoparticle Chemiresistors, Alexandra Oliveira

Honors Scholar Theses

Chemical vapor sensors possess a number of uses in a variety of fields, from environmental and health monitoring to food safety and national security concerns, such as the detection of improvised explosive devices. Many sensors currently in the market have the ability to detect the presence of a select few compounds and measure the concentration at which the species is present. However, these types of sensors require that the vapor to be investigated is known beforehand; they cannot be used for identification except on a case by case basis. In response to this issue, one branch of vapor sensor research ...


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu 2019 University of Arkansas, Fayetteville

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive ...


Tixzr(1-X)N Thin Films For Advanced Plasmonic Materials, Susan R. Schickling, Codi Ferree, Amy Godfrey, Andre Hillsman, Hannah Robinson 2019 The University of Tennessee, Knoxville

Tixzr(1-X)N Thin Films For Advanced Plasmonic Materials, Susan R. Schickling, Codi Ferree, Amy Godfrey, Andre Hillsman, Hannah Robinson

Chancellor’s Honors Program Projects

No abstract provided.


(111)-Oriented Gallium Arsenide Tensile-Strained Quantum Dots Tailored For Entangled Photon Emission, Christopher Schuck 2019 Boise State University

(111)-Oriented Gallium Arsenide Tensile-Strained Quantum Dots Tailored For Entangled Photon Emission, Christopher Schuck

Boise State University Theses and Dissertations

The use of molecular beam epitaxy (MBE) to create quantum dots (QDs) embedded in solid-state semiconductor media has been at the forefront of novel and record-breaking optoelectronic device development for many years. However, the wide range of semiconductor fabrication capabilities and the non-equilibrium growth parameters inherent to MBE mean that there are still many QD research frontiers that are yet to be explored.

This work focuses on a recently discovered method that permits, for the first time, the growth of QDs under tensile strain on non-(100) surfaces. My research explores the first (and currently only) optically active materials system ...


Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh 2019 University of Arkansas, Fayetteville

Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh

Theses and Dissertations

This dissertation is aimed to numerically study the effect of plasmonic grating electrodes on the efficiency of metal-semiconductor-metal photodetectors (MSM PDs) and the sensitivity of Surface Enhanced Raman Spectroscopy (SERS). This research can benefit many areas of nanoscience and optics, including plasmonic applications, such as, super lenses, nano-scale optical circuits, optical filters, surface plasmon enhanced photo-detectors solar cells, imaging sensors, charge-coupled devices (CCD), and optical-fiber communication systems. Several parameters, wire widths and thickness, gap space, taper angle, and the incident wavelength and angle, were investigated. The goal of this research is to utilize the plasmonic phenomenon by using plasmonic gratings ...


Research Of Electro-Optical Effect In Metal Halide Perovskites By Fabry-Perot Interometer Method, Hanxiang Yin 2019 Washington University in St. Louis

Research Of Electro-Optical Effect In Metal Halide Perovskites By Fabry-Perot Interometer Method, Hanxiang Yin

Engineering and Applied Science Theses & Dissertations

Perovskites have been investigated a lot by present and reported with outstanding optoelectronic properties. However, so far there is no publications about another important property, the electro-optical (EO) effect which is related to important applications in photolithography. This thesis is mainly mean to calculate the EO constants of one kind of organic perovskite material, CH3NH3PbI3, which has been reported to have good capability of forming film by spin-coating, through the way of putting the film of CH3NH3PbI3 between two layers of metal mirrors to build a Fabry-Perot interferometer and characterizing ...


A Silicon Germanium Cmos Linear Voltage Regulator For Wireless Agricultural Applications, Aminta Naidili Castillo Robles 2019 University of Arkansas, Fayetteville

A Silicon Germanium Cmos Linear Voltage Regulator For Wireless Agricultural Applications, Aminta Naidili Castillo Robles

Theses and Dissertations

This thesis presents the design, simulation and test results of a silicon germanium (SiGe) complementary metal-oxide-semiconductor (CMOS) linear regulator. The objective of the circuit is to power other analog devices regardless of the load current and input voltage changes. The application of this regulator is to be part of a project developing a miniaturized semiconductor platform that can be inserted into stems of crops in order to measure data inside the plant and then send it wirelessly to the user. The linear regulator was designed on a BiCMOS SiGe 0.13µm which is a GlobalFoundries process. It has been tested ...


Plasmonic Metamaterials: Physical Background And Some Technological Applications, Benjamin G. Schmidt 2019 Liberty University

Plasmonic Metamaterials: Physical Background And Some Technological Applications, Benjamin G. Schmidt

Senior Honors Theses

New technological frontiers appear every year, and few are as intriguing as the field of plasmonic metamaterials (PMMs). These uniquely designed materials use coherent electron oscillations to accomplish an astonishing array of tasks, and they present diverse opportunities in many scientific fields.

This paper consists of an explanation of the scientific background of PMMs and some technological applications of these fascinating materials. The physics section addresses the foundational concepts necessary to understand the operation of PMMs, while the technology section addresses various applications, like precise biological and chemical sensors, cloaking devices for several frequency ranges, nanoscale photovoltaics, experimental optical computing ...


Characterization Of Metal Contacts On Hydrothermally Synthesized Uranium Dioxide For Novel Semiconductor Applications, Tory E. Robinson 2019 Air Force Institute of Technology

Characterization Of Metal Contacts On Hydrothermally Synthesized Uranium Dioxide For Novel Semiconductor Applications, Tory E. Robinson

Theses and Dissertations

This research is focused on determining which metals or combinations of metals form effective electrical contacts on hydrothermally synthesized UO2 substrates to allow for additional work in characterization of the material as well as the feasibility of its use in semiconductor devices such as solid-state neutron detectors. A methodology was established for selection of candidate metals. Target mixtures composed of Au, Ag, Pt, and Mg were chosen along with several single-metals. Thin metal films were deposited onto tungsten probe tips and hydrothermally synthesized UO2 samples to allow for analysis of mechanical and deposited contact to the substrates through I-V measurements.


3-D Multifunctional Sensors Fabricated On Fiber Tips Using A Two-Photon Polymerization Process, Jonathan W. Smith 2019 Air Force Institute of Technology

3-D Multifunctional Sensors Fabricated On Fiber Tips Using A Two-Photon Polymerization Process, Jonathan W. Smith

Theses and Dissertations

This thesis conducts research involving designing, fabricating, and testing optical fiber tip refractive index sensors. The fabrication process used for these sensors is a two-photon polymerization process utilizing a photo sensitive polymer. Unlike planar lithography, this fabrication process allows the creation of arbitrary shapes with a great degree of freedom. Three different fiber tip sensors were fabricated and tested. The first is a flat surfaced single cavity Fabry-Pérot interferometer (FPI) device, the second is a flat surfaced double cavity FPI device, and the final is a confocal surfaced double cavity FPI device. These sensors are tested for thermal radiation and ...


Digital Commons powered by bepress