Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

11,332 Full-Text Articles 16,895 Authors 2,815,725 Downloads 130 Institutions

All Articles in Materials Science and Engineering

Faceted Search

11,332 full-text articles. Page 7 of 313.

Binary 2d Morphologies Of Polymer Phase Separation: Dataset And Python Toolbox, Viraj Shah, Ameya Joshi, Balaji Sesha Sarath Pokuri, Sambuddha Ghosal, Soumik Sarkar, Baskar Ganapathysubramanian, Chinmay Hegde 2019 Iowa State University

Binary 2d Morphologies Of Polymer Phase Separation: Dataset And Python Toolbox, Viraj Shah, Ameya Joshi, Balaji Sesha Sarath Pokuri, Sambuddha Ghosal, Soumik Sarkar, Baskar Ganapathysubramanian, Chinmay Hegde

Mechanical Engineering Publications

Study of the intricate connection between the design of material distributions (also called morphology or microstructure) and the final properties of the material system has been an attractive research theme for material science community. Such analysis provides ability to synthesize the microstructures exhibiting desired properties. This theme encompasses several material systems including porous materials [26], steels and welds [2], composites [14], powder metallurgy [28], 3D printing [22], energy storage devices as batteries [10], and energy converting devices like bulk hetero-junction solar cells [20]. Microstructure-sensitive design has been used to tailor a wide variety of properties including strengths, heat and mass ...


Nickel Based Rtd Fabricated Via Additive Screen Printing Process For Flexible Electronics, Vikram S. Turkani, Dinesh Maddipatla, Binu B. Narakathu, Bilge N. Altay, Paul D. Fleming, Bradley J. Bazuin, Massood Atashbar 2019 Western Michigan University

Nickel Based Rtd Fabricated Via Additive Screen Printing Process For Flexible Electronics, Vikram S. Turkani, Dinesh Maddipatla, Binu B. Narakathu, Bilge N. Altay, Paul D. Fleming, Bradley J. Bazuin, Massood Atashbar

Bilge Nazli Altay

A novel nickel (Ni) based resistance temperature detector (RTD) was successfully developed for temperature monitoring applications. The RTD was fabricated by depositing Ni ink on a flexible polyimide substrate using the screen printing process. Thermogravimetric analysis was performed to study the thermal behavior of the Ni ink and it was observed that the Ni ink can withstand up to 200°C before decomposition of the binder in the ink system. Scanning electron microscopy and white light interferometry were used to analyze the surface morphology of the printed Ni. X-ray diffractometry was used to obtain structural information, phase and crystallite size ...


Review Of Fe-6.5 Wt%Si High Silicon Steel—A Promising Soft Magnetic Material For Sub-Khz Application, Gaoyuan Ouyang, Xi Chen, Yongfeng Liang, Chad Macziewski, Jun Cui 2019 Iowa State University and Ames Laboratory

Review Of Fe-6.5 Wt%Si High Silicon Steel—A Promising Soft Magnetic Material For Sub-Khz Application, Gaoyuan Ouyang, Xi Chen, Yongfeng Liang, Chad Macziewski, Jun Cui

Ames Laboratory Accepted Manuscripts

To meet the growing need for energy efficiency in power electronics and electric machines, a number of new soft magnetic materials are being investigated. Among them, high silicon Fe-Si alloy has been recognized as a promising candidate for low-to-medium-frequency applications. Compared to the currently most widely used 3 wt% silicon steel, the steel containing 6.5 wt% Si possesses more favorable properties, including high electrical resistivity, good saturation magnetization, and near-zero magnetostriction. However, the high silicon content facilitates the formation of ordered phases, resulting in severe brittleness that prohibits mass production using the economical conventional processing methods. A number of ...


Quantifying Thermal Boundary Conductance Of 2d–3d Interfaces, Zlatan Aksamija, Cameron J. Foss 2019 University of Massachusetts Amherst

Quantifying Thermal Boundary Conductance Of 2d–3d Interfaces, Zlatan Aksamija, Cameron J. Foss

Zlatan Aksamija

Heat dissipation in next-generation electronics based on two-dimensional (2D) materials is a
critical issue in their development and implementation. A potential bottleneck for heat removal in
2D-based devices is the thermal pathway from the 2D layer into its supporting substrate. The choice
of substrate, its composition and structure, can strongly impact the thermal boundary conductance
(TBC). Here we investigate the temperature-dependent TBC of 42 interfaces formed between a
group of six 2D materials and seven crystalline and amorphous substrates. We use first-principles
density functional perturbation theory to calculate the full phonon dispersion of the 2D layers and
substrates and then ...


Method Of Increasing Mass Transfer Rate Of Acid Gas Scrubbing Solvents, Joseph E. Remias, Cameron A. Lippert, Kunlei Liu 2019 University of Kentucky

Method Of Increasing Mass Transfer Rate Of Acid Gas Scrubbing Solvents, Joseph E. Remias, Cameron A. Lippert, Kunlei Liu

Center for Applied Energy Research Faculty Patents

A method of increasing the overall mass transfer rate of acid gas scrubbing solids is disclosed. Various catalyst compounds for that purpose are also disclosed.


Computational Design Of Flexible Electride With Nontrivial Band Topology, Sheng-Cai Zhu, Lei Wang, Jing-Yu Qu, Jun-Jie Wang, Timofey Frolov, Xing-Qiu Chen, Qiang Zhu 2019 University of Nevada, Las Vegas

Computational Design Of Flexible Electride With Nontrivial Band Topology, Sheng-Cai Zhu, Lei Wang, Jing-Yu Qu, Jun-Jie Wang, Timofey Frolov, Xing-Qiu Chen, Qiang Zhu

Physics & Astronomy Faculty Publications

Electrides, with their excess electrons distributed in crystal cavities playing the role of anions, exhibit a variety of unique electronic and magnetic properties. In this work, we employ the first-principles crystal structure prediction to identify a new prototype of A3B electride in which both interlayer spacings and intralayer vacancies provide channels to accommodate the excess electrons in the crystal. This A3B type of structure is calculated to be thermodynamically stable for two alkaline metals oxides (Rb3O and K3O). Remarkably, the unique feature of multiple types of cavities makes the spatial arrangement of anionic electrons highly flexible via elastic strain engineering ...


From Tb3ni2 To Tb3coni: The Interplay Between Chemistry, Structure, And Magnetism, Clemens Ritter, Alessia Provino, Francois Fauth, Sudesh K. Dhar, Vitalij K. Pecharsky, Pietro Manfrinetti 2019 Institut Laue-Langevin

From Tb3ni2 To Tb3coni: The Interplay Between Chemistry, Structure, And Magnetism, Clemens Ritter, Alessia Provino, Francois Fauth, Sudesh K. Dhar, Vitalij K. Pecharsky, Pietro Manfrinetti

Ames Laboratory Accepted Manuscripts

Formation, crystal structure, and macroscopic and microscopic magnetism of the binary Tb3Ni2 and derivative pseudobinary Tb3CoxNi2−x phases have been investigated using an array of experimental methods. While Tb3Ni2 crystallizes in the monoclinic Dy3Ni2 structure type (mS20, C2/m), the substitution of Co for Ni results in a structural transition into the rhombohedral Er3Ni2 type (hR45, R¯3h) at x(Co)≈0.34 and beyond in the Tb3CoxNi2−x system. In both the monoclinic and rhombohedral phases, the addition of Co leads to an anisotropic change of lattice parameters and unexpected reduction of the cell volume. Measurements of bulk properties ...


Revealing The Nature Of Antiferroquadrupolar Ordering In Cerium Hexaboride: Ceb6, C. K. Barman, Prashant Singh, Duane Johnson, Aftab Alam 2019 Indian Institute of Technology

Revealing The Nature Of Antiferroquadrupolar Ordering In Cerium Hexaboride: Ceb6, C. K. Barman, Prashant Singh, Duane Johnson, Aftab Alam

Ames Laboratory Accepted Manuscripts

The cerium hexaboride (CeB6) f-electron compound displays a rich array of low-temperature magnetic phenomena, including a “magnetically hidden” order, identified as multipolar in origin via advanced x-ray scattering. From first-principles electronic-structure results, we find that the antiferroquadrupolar(AFQ) ordering in CeB6 arises from crystal-field splitting and yields a band structure in agreement with experiments. With interactions of p electrons between Ce and B6 being small, the electronic state of CeB6 is suitably described as Ce(4f1)3+(e−)(B6)2−. The AFQ state of orbital spins is caused by an exchange interaction induced through spin-orbit interaction, which also splits the ...


The Influence Of Asphalt Ageing On Induction Healing Effect On Porous Asphalt Concrete, Shi XU, Xueyan Liu, Amir Tabakovic, Erik Schlangen 2019 Delft University of Technology

The Influence Of Asphalt Ageing On Induction Healing Effect On Porous Asphalt Concrete, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen

Articles

Induction healing is a proven technology which is able to improve the self‐healing capacity of asphalt concrete. Healing is achieved via electromagnetic current produced by passing induction machine, where steel asphalt constituents heat up which in turn soften the bitumen in the asphalt layer, allowing it to flow and close cracks, repairing the damage. This paper reports on the study which investigated the influence of ageing on the healing capacity of Porous Asphalt (PA) concrete. Porous Asphalt concrete mix was prepared first, then subjected to an accelerated (laboratory) ageing process using a ventilated oven. In order to further evaluate ...


Effects Of Dopants On The Glass Forming Ability In Al-Based Metallic Alloy, Yang Sun, Feng Zhang, Lin Yang, Huajing Song, Mikhail I. Mendelev, Cai-Zhuang Wang, Kai-Ming Ho 2019 Ames Laboratory

Effects Of Dopants On The Glass Forming Ability In Al-Based Metallic Alloy, Yang Sun, Feng Zhang, Lin Yang, Huajing Song, Mikhail I. Mendelev, Cai-Zhuang Wang, Kai-Ming Ho

Ames Laboratory Accepted Manuscripts

The effect of dopants on the metallic glass forming ability is usually considered based on the analysis of changes in the liquid structure or thermodynamics. What is missing in such considerations is an analysis of how a dopant changes the properties of the crystal phases which can form instead of the glass. In order to illuminate this aspect we performed molecular dynamics simulations to study the effects of Mg and Sm dopants on the crystal nucleation in Al. The simulation data were found to be consistent with the experimental observations that addition of Mg to Al does not lead to ...


Ice-Binding Protein From Shewanella Frigidimarinas Inhibits Ice Crystal Growth In Highly Alkaline Solutions, Elizabeth Delesky, Shane D. Frazier, Jaqueline D. Wallat, Kendra L. Bannister, Chelsea Marie Heveran, Wil V. Srubar III 2019 University of Colorado at Boulder

Ice-Binding Protein From Shewanella Frigidimarinas Inhibits Ice Crystal Growth In Highly Alkaline Solutions, Elizabeth Delesky, Shane D. Frazier, Jaqueline D. Wallat, Kendra L. Bannister, Chelsea Marie Heveran, Wil V. Srubar Iii

University Libraries Open Access Fund Supported Publications

The ability of a natural ice-binding protein from Shewanella frigidimarina (SfIBP) to inhibit ice crystal growth in highly alkaline solutions with increasing pH and ionic strength was investigated in this work. The purity of isolated SfIBP was first confirmed via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion chromatography with an ultraviolet detector (SEC-UV). Protein stability was evaluated in the alkaline solutions using circular dichroism spectroscopy, SEC-UV, and SDS-PAGE. SfIBP ice recrystallization inhibition (IRI) activity, a measure of ice crystal growth inhibition, was assessed using a modified splat assay. Statistical analysis of results substantiated that, despite partial denaturation and ...


Sure Abstract - Spring 2019: Biomimetic Metamaterial Scales Enhancing Thermal Coatings’ Mechanical Properties For Turbine Blades, Ryan Horton 2019 University of Central Florida

Sure Abstract - Spring 2019: Biomimetic Metamaterial Scales Enhancing Thermal Coatings’ Mechanical Properties For Turbine Blades, Ryan Horton

Ryan Horton

No abstract provided.


Mechanisms Of Enhanced Thermal Stability Of Polarization In Lead-Free (Bi 1/2na 1/2) 0.94ba 0.06tio 3/Zno Ceramic Composites, Zhongming Fan, Lin Zhou, Tae-Hoon Kim, Ji Zhang, Shan-Tao Zhang, Xiaoli Tan 2019 Iowa State University

Mechanisms Of Enhanced Thermal Stability Of Polarization In Lead-Free (Bi 1/2na 1/2) 0.94ba 0.06tio 3/Zno Ceramic Composites, Zhongming Fan, Lin Zhou, Tae-Hoon Kim, Ji Zhang, Shan-Tao Zhang, Xiaoli Tan

Ames Laboratory Accepted Manuscripts

(Bi 1/2Na 1/2)TiO 3-based solid solutions, one of the major systems of lead-free piezoelectric ceramics, exhibit a low thermal depolarization temperature ( T d~100°C). It was reported that by incorporating 30 mol% ZnO particles to form a ceramic composite of (Bi 1/2Na 1/2) 0.94Ba 0.06TiO 3/ZnO, the depolarization process can be shifted up to ~250 °C. In the present work, a variety of advanced transmission electron microscopy techniques, including in situ heating, annular bright-field, high-angle annular dark-field, geometric phase analysis, energy-dispersive spectrum and electron energy-loss spectroscopy, are employed to investigate the ...


The Effects Of Silica On The Properties Of Vitreous Enamels, Signo Tadeu Dos Reis, Mike Koenigstein, Liang Fan, Genda Chen, Luka Pavic, Andrea Mogus-Milankovic 2019 Missouri University of Science and Technology

The Effects Of Silica On The Properties Of Vitreous Enamels, Signo Tadeu Dos Reis, Mike Koenigstein, Liang Fan, Genda Chen, Luka Pavic, Andrea Mogus-Milankovic

Genda Chen

Ground coat enamels for low carbon steel that contain silica as a mill addition have been developed to study the changes of their properties. Acid-resistant commercial enamel where silica addition was varied from 0 to 10.0 wt % was used for this investigation. The effects of the addition on the corrosion resistance, thermal properties, electrical properties, and mechanical adherence of the enamel to low carbon steel were studied. The corrosion resistance of the steel enameled coupons was tested using a salt spray (fog) apparatus for time periods reaching 168 h at room temperature. It was found that, although the density ...


Slip Of Shuffle Screw Dislocations Through Tilt Grain Boundaries In Silicon, Hao Chen, Valery Levitas, Liming Xiong 2019 Iowa State University

Slip Of Shuffle Screw Dislocations Through Tilt Grain Boundaries In Silicon, Hao Chen, Valery Levitas, Liming Xiong

Aerospace Engineering Publications

In this paper, molecular dynamics (MD) simulations of the interaction between tilt grain boundaries (GBs) and a shuffle screw dislocation in silicon are performed. Results show that dislocations transmit into the neighboring grain for all GBs in silicon. For Σ3, Σ9 and Σ19 GBs, when a dislocation interacts with a heptagon site, it transmits the GB directly. In contrast, when interacting with a pentagon site, it first cross slips to a plane on the heptagon site and then transmits the GB. The energy barrier is also quantified using the climbing image nudged elastic band (CINEB) method. Results show that Σ3 ...


Optimization Of The Calcium Alginate Capsules For Self-Healing Asphalt, Shi Xu, Amir Tabakovic, Xueyan Liu, Damian Palin, Erik Schlangen 2019 Delft University of Technology

Optimization Of The Calcium Alginate Capsules For Self-Healing Asphalt, Shi Xu, Amir Tabakovic, Xueyan Liu, Damian Palin, Erik Schlangen

Articles

Featured Application: This self-healing technology for asphalt pavements has the potential to greatly disrupt asphalt production methods (which have been stable over the past 100 years).This paper presents a development process of ‘calcium-alginate microcapsules encapsulating an asphalt bitumen rejuvenator’. The encapsulated rejuvenator is released when required (on demand) which rejuvenates the aged binder. Once crack is initiated and starts propagating it encounters a microcapsule, energy at tip of the crack opens the microcapsule, releasing the rejuvenator (healing agent). The rejuvenator will infuse into the aged binder soften it, allowing to flow, two broken edges to get into a contact ...


On The Role Of Composition And Processing Parameters On The Microstructure Evolution Of Ti-Xmo Alloys, Michael Y. Mendoza, Peyman Samimi, David A. Brice, Iman Ghamarian, Matt Rolchigo, Richard Lesar, Peter Collins 2019 Iowa State University

On The Role Of Composition And Processing Parameters On The Microstructure Evolution Of Ti-Xmo Alloys, Michael Y. Mendoza, Peyman Samimi, David A. Brice, Iman Ghamarian, Matt Rolchigo, Richard Lesar, Peter Collins

Materials Science and Engineering Publications

Laser Engineered Net Shaping (LENS™) was used to produce a compositionally graded Ti-xMo (0 ≤ x ≤ 12 wt %) specimen and nine Ti-15Mo (fixed composition) specimens at different energy densities to understand the composition–processing–microstructure relationships operating using additive manufacturing. The gradient was used to evaluate the effect of composition on the prior-beta grain size. The specimens deposited using different energy densities were used to assess the processing parameters influence the microstructure evolutions. The gradient specimen did not show beta grain size reduction with the Mo content. The analysis from the perspective of the two grain refinement mechanisms based on a ...


3d Bioprinting Of Stem Cells And Polymer/Bioactive Glass Composite Scaffolds For Bone Tissue Engineering, Caroline Murphy, Krishna Kolan, Wenbin Li, Julie A. Semon, D. E. Day, Ming-Chuan Leu 2019 Missouri University of Science and Technology

3d Bioprinting Of Stem Cells And Polymer/Bioactive Glass Composite Scaffolds For Bone Tissue Engineering, Caroline Murphy, Krishna Kolan, Wenbin Li, Julie A. Semon, D. E. Day, Ming-Chuan Leu

Ming C. Leu

A major limitation of using synthetic scaffolds in tissue engineering applications is insufficient angiogenesis in scaffold interior. Bioactive borate glasses have been shown to promote angiogenesis. There is a need to investigate the biofabrication of polymer composites by incorporating borate glass to increase the angiogenic capacity of the fabri-cated scaffolds. In this study, we investigated the bioprinting of human adipose stem cells (ASCs) with a polycaprolac-tone (PCL)/bioactive borate glass composite. Borate glass at the concentration of 10 to 50 weight %, was added to a mixture of PCL and organic solvent to make an extrudable paste. ASCs suspended in Matrigel ...


Modeling Of Thermal And Mechanical Behavior Of Zrb₂-Sic Ceramic After High Temperature Oxidation, Jun Wei, Lokeswarappa R. Dharani, K. Chandrashekhara, Greg Hilmas, William Fahrenholtz 2019 Missouri University of Science and Technology

Modeling Of Thermal And Mechanical Behavior Of Zrb₂-Sic Ceramic After High Temperature Oxidation, Jun Wei, Lokeswarappa R. Dharani, K. Chandrashekhara, Greg Hilmas, William Fahrenholtz

K. Chandrashekhara

No abstract provided.


Comparison Of Thermal Properties Of Laser Deposition And Traditional Welding Process Via Thermal Diffusivity Measurement, Yu Yang, Omoghene Osaze Obahor, Yaxin Bao, Todd E. Sparks, Jianzhong Ruan, Jacquelyn K. Stroble, Robert G. Landers, Joseph William Newkirk, Frank W. Liou 2019 Missouri University of Science and Technology

Comparison Of Thermal Properties Of Laser Deposition And Traditional Welding Process Via Thermal Diffusivity Measurement, Yu Yang, Omoghene Osaze Obahor, Yaxin Bao, Todd E. Sparks, Jianzhong Ruan, Jacquelyn K. Stroble, Robert G. Landers, Joseph William Newkirk, Frank W. Liou

Robert G. Landers

Laser deposition is an effective process for mold and die repair. In order to improve the part repair quality, the process impact on thermal diffusivity and thermal conductivity needs to be understood for laser deposited, welded and virgin H13. In this paper, H13 tool steel samples were made by laser deposition, welding and virgin H13 and then cut into pieces. Experiments were conducted to investigate the thermal diffusivity and conductivity. A laser flash method is used to test these samples. The future work and opportunities are also summarized.


Digital Commons powered by bepress