Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

11,893 Full-Text Articles 17,722 Authors 2,815,725 Downloads 133 Institutions

All Articles in Materials Science and Engineering

Faceted Search

11,893 full-text articles. Page 1 of 339.

Impact Of Chain Architecture On The Thickness Dependence Of Physical Aging Rate Of Thin Polystyrene Films, Gregory Brown, Elizabeth Lewis, Bryan D. Vogt 2020 University of Akron

Impact Of Chain Architecture On The Thickness Dependence Of Physical Aging Rate Of Thin Polystyrene Films, Gregory Brown, Elizabeth Lewis, Bryan D. Vogt

Williams Honors College, Honors Research Projects

The dynamics of polymer thin films have been demonstrated to be significantly altered from the bulk, but the origins of such differences are not well defined. In this work, we seek to understand the differences in the structural dynamics (or physical aging) of polystyrene (PS) through branching and other well defined architectures (comb and centipede). The aging dynamics of ultrathin films (< 30 nm) differ from relatively thick films (100-150nm) with linear PS thin films aging more rapidly than the relatively “bulk-like” thick films. Ellipsometric measurements are used to characterize the physical aging rate of the films. The change in film thickness and refractive index as the films are held below the glass transition temperature (Tg) provides a simple measure of the physical aging. In this study, four different architectures (linear, comb, 4 arm star, and centipede) will be investigated. For each PS architecture, the aging rate will be determined for film thickness ranging ...


Mandela Splash Pad Pre-Construction Plan, Levi Sandbulte 2019 University of Nebraska at Omaha

Mandela Splash Pad Pre-Construction Plan, Levi Sandbulte

Theses/Capstones/Creative Projects

In the construction industry, it is the responsibility of the general contractor to take the architect’s ideas and turn it into a real building. Many times this requires ample communication and several drafts. This efficient execution of this process is vital to the completion of a successful project. In this project, I practice this communication process. The challenge presented by the owner is to build an affordable splash pad, and without impacting the construction schedule of the Early Childhood Development Center (ECDC) that is being built on the same property at the same time. This proposal gives the owner ...


A Parametric Study For In-Pile Use Of The Thermal Conductivity Needle Probe Using A Transient, Multilayered Analytical Model, Courtney Hollar, Austin Fleming, Kurt Davis, Ralph Budwig, Colby Jensen, David Estrada 2019 University of Idaho

A Parametric Study For In-Pile Use Of The Thermal Conductivity Needle Probe Using A Transient, Multilayered Analytical Model, Courtney Hollar, Austin Fleming, Kurt Davis, Ralph Budwig, Colby Jensen, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

By utilizing an in-pile measurement, thermal conductivity can be determined under prototypic conditions over a range of burnup. In this work we develop a multilayer quadrupoles analytical model to describe the transient thermal interactions between a line heat source (i.e. needle probe) and cylindrical nuclear fuel geometry for inpile thermal conductivity measurements. A finite element analysis of the detailed needle probe geometry was compared to results from the analytical model to verify the assumptions made in the analytical model. Experimentally, the needle probe was used to measure the thermal properties of polytetrafluoroethylene (PTFE) and stainless steel 304 with three ...


From Critical Behavior To Catastrophic Runaways: Comparing Sheared Granular Materials With Bulk Metallic Glasses, Alan A. Long, Dmitry Denisov, Peter Schall, Todd C. Hufnagel, Xiaojun Gu, Wendelin J. Wright, Karin A. Dahmen 2019 University of Illinois at Urbana-Champaign

From Critical Behavior To Catastrophic Runaways: Comparing Sheared Granular Materials With Bulk Metallic Glasses, Alan A. Long, Dmitry Denisov, Peter Schall, Todd C. Hufnagel, Xiaojun Gu, Wendelin J. Wright, Karin A. Dahmen

Faculty Journal Articles

The flow of granular materials and metallic glasses is governed by strongly correlated, avalanche-like deformation. Recent comparisons focused on the scaling regimes of the small avalanches, where strong similarities were found in the two systems. Here, we investigate the regime of large avalanches by computing the temporal profile or “shape” of each one, i.e., the time derivative of the stress-time series during each avalanche. We then compare the experimental statistics and dynamics of these shapes in granular media and bulk metallic glasses. We complement the experiments with a mean-field model that predicts a critical size beyond which avalanches turn ...


Determining Surface Energy Of Porous Substrates By Spray Ionization, Deidre E. Damon, Yosef S. Maher, Danyelle M. Allen, Jill Baker, Boyce Chang, Simon Maher, Martin M. Thuo, Abraham K. Badu-Tawiah 2019 The Ohio State University and Ohio Department of Agriculture

Determining Surface Energy Of Porous Substrates By Spray Ionization, Deidre E. Damon, Yosef S. Maher, Danyelle M. Allen, Jill Baker, Boyce Chang, Simon Maher, Martin M. Thuo, Abraham K. Badu-Tawiah

Martin M. Thuo

We have developed a new spray-based method for characterizing surface energies of planar, porous substrates. Distinct spray modes (electrospray versus electrostatic-spray), from the porous substrates, occur in the presence of an applied DC potential after wetting with solvents of different surface tension. The ion current resulting from the spray process maximizes when the surface energy of the porous substrate approaches the surface tension of the wetting solvent. By monitoring selected ion current (e.g., benzoylecgonine, m/z 290→168) with a mass spectrometer or total ion current with an ammeter, the solvent surface tension yielding the maximum ion current was ...


In Situ Tem Study Of The Amorphous-To-Crystalline Transition During Dielectric Breakdown In Tio2 Film, Xinchun Tian, Chloe Cook, Wei Hong, Tao Ma, Geoff L. Brennecka, Xiaoli Tan 2019 Iowa State University

In Situ Tem Study Of The Amorphous-To-Crystalline Transition During Dielectric Breakdown In Tio2 Film, Xinchun Tian, Chloe Cook, Wei Hong, Tao Ma, Geoff L. Brennecka, Xiaoli Tan

Xiaoli Tan

Dielectric breakdown of oxides is a main limiting factor for improvement of the performance of electronic devices. Present understanding suggests that defects produced by intense voltage accumulate in the oxide to form a percolation path connecting the two electrodes and trigger the dielectric breakdown. However, reports on directly visualizing the process at nanoscale are very limited. Here, we apply in situ transmission electron microscopy to characterize the structural and compositional changes of amorphous TiO2 under extreme electric field (~100 kV/mm) in a Si/TiO2/W system. Upon applying voltage pulses, the amorphous TiO2 gradually transformed to crystalline sub-stoichiometric rutile ...


Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. McQueeney 2019 Iowa State University and Ames Laboratory

Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. Mcqueeney

A. I. Goldman

Whereas magnetic frustration is typically associated with local-moment magnets in special geometric arrangements, here we show that SrCo2As2 is a candidate for frustrated itinerant magnetism. Using inelastic neutron scattering (INS), we find that antiferromagnetic (AF) spin fluctuations develop in the square Co layers of SrCo2As2 below T approximate to 100 K centered at the stripe-type AF propagation vector of (1/2, 1/2), and that their development is concomitant with a suppression of the uniform magnetic susceptibility determined via magnetization measurements. We interpret this switch in spectral weight as signaling a temperature-induced crossover from an instability toward ferromagnetism ordering to ...


Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. McQueeney 2019 Iowa State University and Ames Laboratory

Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. Mcqueeney

Peter P. Orth

Whereas magnetic frustration is typically associated with local-moment magnets in special geometric arrangements, here we show that SrCo2As2 is a candidate for frustrated itinerant magnetism. Using inelastic neutron scattering (INS), we find that antiferromagnetic (AF) spin fluctuations develop in the square Co layers of SrCo2As2 below T approximate to 100 K centered at the stripe-type AF propagation vector of (1/2, 1/2), and that their development is concomitant with a suppression of the uniform magnetic susceptibility determined via magnetization measurements. We interpret this switch in spectral weight as signaling a temperature-induced crossover from an instability toward ferromagnetism ordering to ...


Correction Of Pattern Size Deviations In The Fabrication Of Photomasks Made With A Laser Direct-Writer, Ningzhi Xie, George Patrick Watson 2019 Singh Center for Nanotechnology

Correction Of Pattern Size Deviations In The Fabrication Of Photomasks Made With A Laser Direct-Writer, Ningzhi Xie, George Patrick Watson

Protocols and Reports

When using Heidelberg DWL66+ laser writer to fabricate the photomask, the pattern feature dimensions may have deviations. These deviations can be caused by the lithography process and the undercut in the metal etch process. The same deviation value of 0.8µm was found to appear in all the patterns independent of the pattern original size and local pattern density. To overcome this universal deviation, a universal bias is suggested to be applied to the original patterns during the data preparation for the lithography process. In order to ensure this pre-exposure bias method can work, both the laser direct-write exposure conditions ...


Determining Surface Energy Of Porous Substrates By Spray Ionization, Deidre E. Damon, Yosef S. Maher, Danyelle M. Allen, Jill Baker, Boyce Chang, Simon Maher, Martin M. Thuo, Abraham K. Badu-Tawiah 2019 The Ohio State University and Ohio Department of Agriculture

Determining Surface Energy Of Porous Substrates By Spray Ionization, Deidre E. Damon, Yosef S. Maher, Danyelle M. Allen, Jill Baker, Boyce Chang, Simon Maher, Martin M. Thuo, Abraham K. Badu-Tawiah

Materials Science and Engineering Publications

We have developed a new spray-based method for characterizing surface energies of planar, porous substrates. Distinct spray modes (electrospray versus electrostatic-spray), from the porous substrates, occur in the presence of an applied DC potential after wetting with solvents of different surface tension. The ion current resulting from the spray process maximizes when the surface energy of the porous substrate approaches the surface tension of the wetting solvent. By monitoring selected ion current (e.g., benzoylecgonine, m/z 290→168) with a mass spectrometer or total ion current with an ammeter, the solvent surface tension yielding the maximum ion current was ...


In Situ Tem Study Of The Amorphous-To-Crystalline Transition During Dielectric Breakdown In Tio2 Film, Xinchun Tian, Chloe Cook, Wei Hong, Tao Ma, Geoff L. Brennecka, Xiaoli Tan 2019 Iowa State University

In Situ Tem Study Of The Amorphous-To-Crystalline Transition During Dielectric Breakdown In Tio2 Film, Xinchun Tian, Chloe Cook, Wei Hong, Tao Ma, Geoff L. Brennecka, Xiaoli Tan

Materials Science and Engineering Publications

Dielectric breakdown of oxides is a main limiting factor for improvement of the performance of electronic devices. Present understanding suggests that defects produced by intense voltage accumulate in the oxide to form a percolation path connecting the two electrodes and trigger the dielectric breakdown. However, reports on directly visualizing the process at nanoscale are very limited. Here, we apply in situ transmission electron microscopy to characterize the structural and compositional changes of amorphous TiO2 under extreme electric field (~100 kV/mm) in a Si/TiO2/W system. Upon applying voltage pulses, the amorphous TiO2 gradually transformed to crystalline sub-stoichiometric rutile ...


Incorporation Of Composite Defects From Ultrasonic Nde Into Cad And Fe Models, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy 2019 Iowa State University

Incorporation Of Composite Defects From Ultrasonic Nde Into Cad And Fe Models, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy

Stephen D. Holland

Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding ...


Model-Assisted Probability Of Detection Of Flaws In Aluminum Blocks Using Polynomial Chaos Expansions, Xiaosong Du, Leifur Leifsson, Robert J. Grandin, William Q. Meeker, Ronald A. Roberts, Jiming Song 2019 Iowa State University

Model-Assisted Probability Of Detection Of Flaws In Aluminum Blocks Using Polynomial Chaos Expansions, Xiaosong Du, Leifur Leifsson, Robert J. Grandin, William Q. Meeker, Ronald A. Roberts, Jiming Song

William Q Meeker

Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination withmodel-assisted POD (MAPOD) methods. With the development of advanced physics-basedmethods, such as ultrasonic NDTtesting, the empirical information,needed for POD methods, can bereduced. However, performing accurate numerical simulationscan be prohibitivelytime-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the ...


Model-Assisted Probability Of Detection Of Flaws In Aluminum Blocks Using Polynomial Chaos Expansions, Xiaosong Du, Leifur Leifsson, Robert J. Grandin, William Q. Meeker, Ronald A. Roberts, Jiming Song 2019 Iowa State University

Model-Assisted Probability Of Detection Of Flaws In Aluminum Blocks Using Polynomial Chaos Expansions, Xiaosong Du, Leifur Leifsson, Robert J. Grandin, William Q. Meeker, Ronald A. Roberts, Jiming Song

Jiming Song

Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination withmodel-assisted POD (MAPOD) methods. With the development of advanced physics-basedmethods, such as ultrasonic NDTtesting, the empirical information,needed for POD methods, can bereduced. However, performing accurate numerical simulationscan be prohibitivelytime-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the ...


Surrogate Modeling Of Ultrasonic Simulations Using Data-Driven Methods, Xiaosong Du, Robert J. Grandin, Leifur Leifsson 2019 Iowa State University

Surrogate Modeling Of Ultrasonic Simulations Using Data-Driven Methods, Xiaosong Du, Robert J. Grandin, Leifur Leifsson

Robert Grandin

Ultrasonic testing (UT) is used to detect internal flaws in materials and to characterize material properties. In many applications, computational simulations are an important part of the inspection-design and analysis processes. Having fast surrogate models for UT simulations is key for enabling efficient inverse analysis and model-assisted probability of detection (MAPOD). In many cases, it is impractical to perform the aforementioned tasks in a timely manner using current simulation models directly. Fast surrogate models can make these processes computationally tractable. This paper presents investigations of using surrogate modeling techniques to create fast approximate models of UT simulator responses. In particular ...


Model-Assisted Probability Of Detection Of Flaws In Aluminum Blocks Using Polynomial Chaos Expansions, Xiaosong Du, Leifur Leifsson, Robert J. Grandin, William Q. Meeker, Ronald A. Roberts, Jiming Song 2019 Iowa State University

Model-Assisted Probability Of Detection Of Flaws In Aluminum Blocks Using Polynomial Chaos Expansions, Xiaosong Du, Leifur Leifsson, Robert J. Grandin, William Q. Meeker, Ronald A. Roberts, Jiming Song

Robert Grandin

Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination withmodel-assisted POD (MAPOD) methods. With the development of advanced physics-basedmethods, such as ultrasonic NDTtesting, the empirical information,needed for POD methods, can bereduced. However, performing accurate numerical simulationscan be prohibitivelytime-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the ...


Utsim2 Validation, Robert J. Grandin, Tim Gray 2019 Iowa State University

Utsim2 Validation, Robert J. Grandin, Tim Gray

Robert Grandin

The Center for NDE (CNDE) at Iowa State University has a long history of developing physics models for NDE and packaging these models into simulation tools which make the modeling capabilities accessible to CNDEs industrial sponsors. Recent work at CNDE has led to the development of a new ultrasonic simulation package, UTSim2, which aims to continue this tradition of supporting industrial application of CNDE models. In order to meet this goal, UTSim2 has been designed as an extensible software package which can support previously-developed physics models as well as future models yet to be developed. Initial work has focused on ...


Incorporation Of Composite Defects From Ultrasonic Nde Into Cad And Fe Models, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy 2019 Iowa State University

Incorporation Of Composite Defects From Ultrasonic Nde Into Cad And Fe Models, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy

Robert Grandin

Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding ...


Ultrasound Scatter In Heterogeneous 3d Microstructures: Parameters Affecting Multiple Scattering, Brady J. Engle, Ronald A. Roberts, Robert J. Grandin 2019 Iowa State University

Ultrasound Scatter In Heterogeneous 3d Microstructures: Parameters Affecting Multiple Scattering, Brady J. Engle, Ronald A. Roberts, Robert J. Grandin

Robert Grandin

This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful ...


Evaluation Of The Fidelity Of Feature Descriptor-Based Specimen Tracking For Automatic Nde Data Integration, Rafael Radkowski, Stephen D. Holland, Robert J. Grandin 2019 Iowa State University

Evaluation Of The Fidelity Of Feature Descriptor-Based Specimen Tracking For Automatic Nde Data Integration, Rafael Radkowski, Stephen D. Holland, Robert J. Grandin

Robert Grandin

This research addresses inspection location tracking in the field of nondestructive evaluation (NDE) using a computer vision technique to determine the position and orientation of typical NDE equipment in a test setup. The objective is the tracking accuracy for typical NDE equipment to facilitate automatic NDE data integration. Since the employed tracking technique relies on surface curvatures of an object of interest, the accuracy can be only experimentally determined. We work with flash-thermography and conducted an experiment in which we tracked a specimen and a thermography flash hood, measured the spatial relation between both, and used the relation as input ...


Digital Commons powered by bepress