Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

2,524 Full-Text Articles 3,746 Authors 952,013 Downloads 91 Institutions

All Articles in Engineering Science and Materials

Faceted Search

2,524 full-text articles. Page 1 of 75.

Predicting Dynamic Modulus Of Asphalt Mixture Using Data Obtained From Indirect Tension Mode Of Testing, Parnian Ghasemi, Shibin Lin, Derrick K. Rollins, R. Christopher Williams 2019 Iowa State University

Predicting Dynamic Modulus Of Asphalt Mixture Using Data Obtained From Indirect Tension Mode Of Testing, Parnian Ghasemi, Shibin Lin, Derrick K. Rollins, R. Christopher Williams

Derrick K Rollins, Sr.

Understanding stress-strain behavior of asphalt pavement under repetitive traffic loading is of critical importance to predict pavement performance and service life. For viscoelastic materials, the stress-strain relationship can be represented by the dynamic modulus. The dynamic modulus test in indirect tension mode can be used to measure the modulus of each specific layer of asphalt pavements using representative samples. Dynamic modulus is a function of material properties, loading, and environmental conditions. Developing predictive models for dynamic modulus is efficient and cost effective. This article focuses on developing an accurate Finite Element (FE) model using mixture elastic modulus and asphalt binder ...


Predicting Dynamic Modulus Of Asphalt Mixture Using Data Obtained From Indirect Tension Mode Of Testing, Parnian Ghasemi, Shibin Lin, Derrick K. Rollins, R. Christopher Williams 2019 Iowa State University

Predicting Dynamic Modulus Of Asphalt Mixture Using Data Obtained From Indirect Tension Mode Of Testing, Parnian Ghasemi, Shibin Lin, Derrick K. Rollins, R. Christopher Williams

R. Christopher Williams

Understanding stress-strain behavior of asphalt pavement under repetitive traffic loading is of critical importance to predict pavement performance and service life. For viscoelastic materials, the stress-strain relationship can be represented by the dynamic modulus. The dynamic modulus test in indirect tension mode can be used to measure the modulus of each specific layer of asphalt pavements using representative samples. Dynamic modulus is a function of material properties, loading, and environmental conditions. Developing predictive models for dynamic modulus is efficient and cost effective. This article focuses on developing an accurate Finite Element (FE) model using mixture elastic modulus and asphalt binder ...


Optimization Of Takeoffs On Unbalanced Fields Using Takeoff Performance Tool, Nihad E. Daidzic 2019 AAR Aerospace Consulting, LLC

Optimization Of Takeoffs On Unbalanced Fields Using Takeoff Performance Tool, Nihad E. Daidzic

Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI

Unbalanced field length exists when ASDA and TODA are not equal. Airport authority may add less expensive substitutes to runway full-strength pavement in the form of stopways and/or clearways to basic TORA to increase operational takeoff weights. Here developed Takeoff Performance Tool is a physics-based total-energy model used to simulate FAR/CS 25 regulated airplane takeoffs. Any aircraft, runway, and environmental conditions can be simulated, while complying with the applicable regulations and maximizing performance takeoff weights. The mathematical model was translated into Matlab, Fortran 95/2003/2008, Basic, and MS Excel computer codes. All existing FAR/CS 25 takeoff ...


Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey 2019 Olivet Nazarene University

Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey

Honors Program Projects

Fermi National Accelerator Laboratory is sending a 3U CubeSat into LEO to search for a 3.5 keV photon corresponding to the decay of a theorized dark matter particle called the sterile neutrino. The CubeSat will encounter environmental variations while in orbit that can be computed through an orbital analysis using System’s Tool Kit. In order to minimize thermal noise readout, improve optical resolution, and increase bandwidth, the sensors must be kept below 170K while taking data. This temperature is difficult to achieve due to radiation from the Sun and the Earth’s albedo radiation. Through the thermal analysis ...


Efficient Solar-To-Thermal Energy Conversion And Storage With High-Thermal-Conductivity And Form-Stabilized Phase Change Composite Based On Wood-Derived Scaffolds, Bolin Chen, Meng Han, Bowei Zhang, Gaoyuan Ouyang, Behrouz Shafei, Xinwei Wang, Shan Hu 2019 Iowa State University

Efficient Solar-To-Thermal Energy Conversion And Storage With High-Thermal-Conductivity And Form-Stabilized Phase Change Composite Based On Wood-Derived Scaffolds, Bolin Chen, Meng Han, Bowei Zhang, Gaoyuan Ouyang, Behrouz Shafei, Xinwei Wang, Shan Hu

Shan Hu

Solar-to-thermal energy conversion is one of the most efficient ways to harvest solar energy. In this study, a novel phase change composite with porous carbon monolith derived from natural wood is fabricated to harvest solar irradiation and store it as thermal energy. Organic phase change material n-octadecane is physically adsorbed inside the porous structure of the carbonized wood, and a thin graphite coating encapsulates the exterior of the wood structure to further prevent n-octadecane leakage. The carbonized wood scaffold and the graphite coating not only stabilize the form of the n-octadecane during phase change, but also enhance its thermal conductivity ...


Liquid Metal-Elastomer Soft Composites With Independently Controllable And Highly Tunable Droplet Size And Volume Loading, Ravi Tutika, Steven Kmiec, A. B. M. Tahidul Haque, Steve W. Martin, Michael D. Bartlett 2019 Iowa State University

Liquid Metal-Elastomer Soft Composites With Independently Controllable And Highly Tunable Droplet Size And Volume Loading, Ravi Tutika, Steven Kmiec, A. B. M. Tahidul Haque, Steve W. Martin, Michael D. Bartlett

Michael Bartlett

Soft composites are critical for soft and flexible materials in energy harvesting, actuators, and multifunctional devices. One emerging approach to create multifunctional composites is through the incorporation of liquid metal (LM) droplets such as eutectic gallium indium (EGaIn) in highly deformable elastomers. The microstructure of such systems is critical to their performance, however, current materials lack control of particle size at diverse volume loadings. Here, we present a fabrication approach to create liquid metal-elastomer composites with independently controllable and highly tunable droplet size (100 nm ≦ D ≦ 80 μm) and volume loading (0 ≦ φ ≦ 80%). This is achieved through a combination ...


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller 2019 University of Arkansas, Fayetteville

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and ...


Parameters That Influence The Performance Of Dispersion Barrier Coatings, Randy Raditya 2019 University of Maine

Parameters That Influence The Performance Of Dispersion Barrier Coatings, Randy Raditya

Electronic Theses and Dissertations

Barrier coating layers are important in many paper grades used in food packaging and have the potential to help reduce our use of plastics in some situations. Barrier layers to produce water proof packaging such as milk or juice cartons or coffee cups are common. Water based dispersion barrier coatings have the potential to be a low-cost alternative to extrusion coated layers. Water borne coatings are reported to be easy to recycle and break down in the environment. However, barrier properties are often less than what is desired and expected for these water borne coatings. The reason for this poor ...


Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr. 2019 Linfield College

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr.

Senior Theses

Properties of several working magnetic coupled rotors have been measured and their performance compared to theoretical models. Axial magnetic couplers allow rotors to work within harsh environments, without the need for seals, proper alignment, or overload protection on a motor. The influence of geometrical parameters, such as distance from the center of the rotors, polarity arrangement, and the number of dipole pairs were experimentally tested. These results can be used to improve rotor designs, to increase strength and efficiency.


Mechanical And Tribological Behaviour Of Treated And Untreated Moringa Oleifera Pods Fiber Reinforced Epoxy Polymer Composite For Packaging Applications, prakash sampath, Senthil Kumar V.S Dr 2019 Anna University

Mechanical And Tribological Behaviour Of Treated And Untreated Moringa Oleifera Pods Fiber Reinforced Epoxy Polymer Composite For Packaging Applications, Prakash Sampath, Senthil Kumar V.S Dr

Journal of Applied Packaging Research

Researchers now focus on the use of natural fiber polymer composites materials for packing applications. This attention is due to their low cost and renewable characteristics. Fabrication of composites with the use of renewable resources has many benefits of alternating from an appropriate management and reduction in industrial wastages, ecofriendly behaviour to cost effectiveness. The artificial fibers in packing industries can be replaced by natural fibers in the areas where stiffness and high strength are not the primary requirement. In the last decade the use of Natural fibers in the place of artificial fibers for reinforcements in epoxy resin matrix ...


A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky-Golay Filter For Ecg Denoising, Hui Huang, Shiyan Hu, Ye Sun 2019 Michigan Technological University

A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky-Golay Filter For Ecg Denoising, Hui Huang, Shiyan Hu, Ye Sun

Department of Mechanical Engineering-Engineering Mechanics Publications

Electrocardiogram (ECG) sensing is an important application for the diagnosis of cardiovascular diseases. Recently, driven by the emerging technology of wearable electronics, massive wearable ECG sensors are developed, which however brings additional sources of noise contamination on ECG signals from these wearable ECG sensors. In this paper, we propose a new low-distortion adaptive Savitzky-Golay (LDASG) filtering method for ECG denoising based on discrete curvature estimation, which demonstrates better performance than the state of the art of ECG denoising. The standard Savitzky-Golay (SG) filter has a remarkable performance of data smoothing. However, it lacks adaptability to signal variations and thus often ...


Investigation Of Multiple Torch Paw-Based Additive Manufacturing, Nathan Huft 2019 Montana Tech

Investigation Of Multiple Torch Paw-Based Additive Manufacturing, Nathan Huft

Graduate Theses & Non-Theses

PAW Print 3D (PP3D), a wire and arc additive manufacturing (AM) system was developed. PP3D comprises three plasma arc welding torches arranged radially around a central wire feed. Using three torches was hypothesized to eliminate sensitivity to travel direction. Two deposition modes were developed – continuous, which deposited continuous beads, and dabber, which deposited discreet “dabs” of material. Dabber was hypothesized to provide favorable solidification conditions that would refine the as-deposited grain structure. Three sets of process parameters for each deposition mode were developed. Ineffective workpiece melting was observed and investigated during process development. Using COMSOL Multiphysics software and experimental observations ...


A Novel Correlation Model For Horizontal Axis Wind Turbines Operating At High-Interference Flow Regimes, Anurag Rajan, Fernando L. Ponta 2019 Michigan Technological University

A Novel Correlation Model For Horizontal Axis Wind Turbines Operating At High-Interference Flow Regimes, Anurag Rajan, Fernando L. Ponta

Department of Mechanical Engineering-Engineering Mechanics Publications

Driven by economics-of-scale factors, wind-turbine rotor sizes have increased formidably in recent years. Larger rotors with lighter blades of increased flexibility will experiment substantially higher levels of deformation. Future turbines will also incorporate advanced control strategies to widen the range of wind velocities over which energy is captured. These factors will extend turbine operational regimes, including flow states with high interference factors. In this paper we derive a new empirical relation to both improve and extend the range of Blade Element Momentum (BEM) models, when applied to high interference-factor regimes. In most BEM models, these flow regimes are modeled using ...


Advances In Design Methodology In Swelling Shale Rock In Southern Ontario, Thomas R.A. Lardner 2019 The University of Western Ontario

Advances In Design Methodology In Swelling Shale Rock In Southern Ontario, Thomas R.A. Lardner

Electronic Thesis and Dissertation Repository

As infrastructure requirements increase in southern Ontario, excavations within swelling rock formations will become more frequent and larger. The objective of this study is to advance design capability for structures in swelling rock through three aspects: i) developing a practical swelling model for design engineers, ii) investigate two crushable/compressible materials for the mitigation of swelling rock effects, and iii) observe and analyze the behaviour of swelling rock to current excavation techniques.

A swelling rock constitutive model has been developed. The swelling parameters include the horizontal and vertical free swell potential, threshold stress, and critical stress as well as a ...


Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai 2019 Purdue University Northwest

Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai

ASEE IL-IN Section Conference

Application of Computational Tools to Spaghetti-Based Truss Design

Statics and Strength of Materials are two foundational courses for Mechanical/Civil Engineering. In order to assist students in better understanding and applying concepts to a meaningful design task, SolidWorks and theoretical calculation were used for a spaghetti-bridge design contest with the constraints of given maximum weight and allowable support-material weight. As the first step of this iterative designing process, both extrude feature and structural member were introduced to model planar bridge trusses. Then SolidWorks’ Statics module was used to run FEA analysis of the structural performance in efforts to optimize the ...


A Lagrangian Probability-Density-Function Model For Collisional Turbulent Fluid–Particle Flows, Alessio Innocenti, Rodney O. Fox, Maria Vittoria Salvetti, Sergio Chibbaro 2019 Sorbonne Universite and Universita di Pisa

A Lagrangian Probability-Density-Function Model For Collisional Turbulent Fluid–Particle Flows, Alessio Innocenti, Rodney O. Fox, Maria Vittoria Salvetti, Sergio Chibbaro

Chemical and Biological Engineering Publications

Inertial particles in turbulent flows are characterised by preferential concentration and segregation and, at sufficient mass loading, dense particle clusters may spontaneously arise due to momentum coupling between the phases. These clusters, in turn, can generate and sustain turbulence in the fluid phase, which we refer to as cluster-induced turbulence (CIT). In the present work, we tackle the problem of developing a framework for the stochastic modelling of moderately dense particle-laden flows, based on a Lagrangian probability-density-function formalism. This framework includes the Eulerian approach, and hence can be useful also for the development of two-fluid models. A rigorous formalism and ...


Progress Report I: Fabrication Of Nanopores In Silicon Nitride Membranes Using Self-Assembly Of Ps-B-Pmma, Unnati Joshi, Vishal Venkatesh, Hiromichi Yamamoto 2019 Quattrone Nanofabrication Facility

Progress Report I: Fabrication Of Nanopores In Silicon Nitride Membranes Using Self-Assembly Of Ps-B-Pmma, Unnati Joshi, Vishal Venkatesh, Hiromichi Yamamoto

Protocols and Reports

This progress report describes fabrication of silicon nitride membranes from Si wafers using cleanroom techniques, and of nanopore preparation via a self-assembled PS-b-PMMA film. A 36.9 nm thick membrane is successfully prepared by KOH wet etching. The membrane is a layered structure of 36.8 µm thick Si and 116 nm thick silicon nitride. It is also exhibited that in the 47 nm thick PS-b-PMMA film, the nanopore structure is observed in the vicinity of a dust particle, but most of the area indicates lamellar domain structure. The thickness of PS-b-PMMA film will ...


Interactions Between Dislocations And Three-Dimensional Annealing Twins In Face Centered Cubic Metals, Yanxiang Liang, Xiaofang Yang, Mingyu Gong, Guisen Liu, Qing Liu, Jian Wang 2019 University of Nebraska–Lincoln

Interactions Between Dislocations And Three-Dimensional Annealing Twins In Face Centered Cubic Metals, Yanxiang Liang, Xiaofang Yang, Mingyu Gong, Guisen Liu, Qing Liu, Jian Wang

Mechanical & Materials Engineering Faculty Publications

Annealing twins often form in metals with a face centered cubic structure during thermal and mechanical processing. Here, we conducted molecular dynamic (MD) simulations for copper and aluminum to study the interaction processes between {1 1 1}1/2 <1 1 0> dislocations and a three-dimensional annealing twin. Twin boundaries are characterized with Σ3{1 1 1} coherent twin boundaries (CTBs) and Σ3{1 1 2} incoherent twin boundaries (ITBs). MD results revealed that dislocation-ITB interactions affect slip transmission for a dislocation crossing CTBs, facilitating the nucleation of Lomer dislocation.


Nickel Based Rtd Fabricated Via Additive Screen Printing Process For Flexible Electronics, Vikram S. Turkani, Dinesh Maddipatla, Binu B. Narakathu, Bilge N. Altay, Paul D. Fleming, Bradley J. Bazuin, Massood Atashbar 2019 Western Michigan University

Nickel Based Rtd Fabricated Via Additive Screen Printing Process For Flexible Electronics, Vikram S. Turkani, Dinesh Maddipatla, Binu B. Narakathu, Bilge N. Altay, Paul D. Fleming, Bradley J. Bazuin, Massood Atashbar

Bilge Nazli Altay

A novel nickel (Ni) based resistance temperature detector (RTD) was successfully developed for temperature monitoring applications. The RTD was fabricated by depositing Ni ink on a flexible polyimide substrate using the screen printing process. Thermogravimetric analysis was performed to study the thermal behavior of the Ni ink and it was observed that the Ni ink can withstand up to 200°C before decomposition of the binder in the ink system. Scanning electron microscopy and white light interferometry were used to analyze the surface morphology of the printed Ni. X-ray diffractometry was used to obtain structural information, phase and crystallite size ...


A Hamiltonian Surface-Shaping Approach For Control System Analysis And The Design Of Nonlinear Wave Energy Converters, Shadi Darani, Ossama Abdelkhalik, Rush D. Robinett III, David Wilson 2019 Michigan Technological University

A Hamiltonian Surface-Shaping Approach For Control System Analysis And The Design Of Nonlinear Wave Energy Converters, Shadi Darani, Ossama Abdelkhalik, Rush D. Robinett Iii, David Wilson

Department of Mechanical Engineering-Engineering Mechanics Publications

The dynamic model of Wave Energy Converters (WECs) may have nonlinearities due to several reasons such as a nonuniform buoy shape and/or nonlinear power takeoff units. This paper presents the Hamiltonian Surface-Shaping (HSS) approach as a tool for the analysis and design of nonlinear control of WECs. The Hamiltonian represents the stored energy in the system and can be constructed as a function of the WEC’s system states, its position, and velocity. The Hamiltonian surface is defined by the energy storage, while the system trajectories are constrained to this surface and determined by the power flows of the ...


Digital Commons powered by bepress