Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,496 Full-Text Articles 2,516 Authors 333,896 Downloads 59 Institutions

All Articles in Mechanics of Materials

Faceted Search

1,496 full-text articles. Page 1 of 47.

Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim 2019 Singh Center for Nanotechnology

Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim

Tool Data

S1805 positive photoresist has been deposited on single crystalline Si wafers using a Suss MicroTec Alta Spray. The influence of flow rate, nozzle speed, pitch and number of passes on the thickness of the photoresist was studied. Results show that the thickness of S1805 is linearly proportional to the flow rate and number of passes, and inversely proportional to the nozzle speed and pitch.


Correction Of Pattern Size Deviations In The Fabrication Of Photomasks Made With A Laser Direct-Writer, Ningzhi Xie, George Patrick Watson 2019 Singh Center for Nanotechnology

Correction Of Pattern Size Deviations In The Fabrication Of Photomasks Made With A Laser Direct-Writer, Ningzhi Xie, George Patrick Watson

Protocols and Reports

When using Heidelberg DWL66+ laser writer to fabricate the photomask, the pattern feature dimensions may have deviations. These deviations can be caused by the lithography process and the undercut in the metal etch process. The same deviation value of 0.8µm was found to appear in all the patterns independent of the pattern original size and local pattern density. To overcome this universal deviation, a universal bias is suggested to be applied to the original patterns during the data preparation for the lithography process. In order to ensure this pre-exposure bias method can work, both the laser direct-write exposure conditions ...


Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma 2019 Chinese Academy of Sciences & University of Science and Technology of China

Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma

Mechanical & Materials Engineering Faculty Publications

In advanced fission and fusion reactors, structural materials suffer from high dose irradiation by energetic particles and are subject to severe microstructure damage. He atoms, as a byproduct of the (n) transmutation reaction, could accumulate to form deleterious cavities, which accelerate radiation-induced embrittlement, swelling and surface deterioration, ultimately degrade the service lifetime of reactor materials. Extensive studies have been performed to explore the strategies that can mitigate He ion irradiation damage. Recently, nanostructured materials have received broad attention because they contain abundant interfaces that are efficient sinks for radiation-induced defects. In this review, we summarize and analyze the current understandings ...


The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim 2019 University of Nebraska-Lincoln

The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim

Mechanical & Materials Engineering Faculty Publications

Mesenchymal stem cells (MSCs) show tremendous promise as a cell source for tissue engineering and regenerative medicine, and are understood to be mechanosensitive to external mechanical environments. In recent years, increasing evidence points to nuclear envelope proteins as a key player in sensing and relaying mechanical signals in MSCs to modulate cellular form, function, and differentiation. Of particular interest is the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex that includes nesprin and SUN. In this review, the way in which cells can sense external mechanical environments through an intact nuclear envelope and LINC complex proteins will be briefly described. Then ...


General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr 2019 University of New Orleans

General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr

University of New Orleans Theses and Dissertations

We will create a class of generalized ellipses and explore their ability to define a distance on a space and generate continuous, periodic functions. Connections between these continuous, periodic functions and the generalizations of trigonometric functions known in the literature shall be established along with connections between these generalized ellipses and some spectrahedral projections onto the plane, more specifically the well-known multifocal ellipses. The superellipse, or Lam\'{e} curve, will be a special case of the generalized ellipse. Applications of these generalized ellipses shall be explored with regards to some one-dimensional systems of classical mechanics. We will adopt the Ramberg-Osgood ...


Optical Direct Detection Of Thermal Vibrations Of Ultralow Stiffness Micro-Nano Structures., Sri Sukanta Chowdhury 2019 University of Louisville

Optical Direct Detection Of Thermal Vibrations Of Ultralow Stiffness Micro-Nano Structures., Sri Sukanta Chowdhury

Electronic Theses and Dissertations

A direct detection optical vibrometer is constructed around an 850 nm laser and a quadrant photodetector (QPD). The limit of detection is 0.2 fW which corresponds to a minimum amplitude of 0.1 Å. The vibrometer is used to measure the thermal vibration spectra of low stiffness micromechanical structures have nanometer features. One structure measured is a cantilevered 30 μm diameter glass fiber. Vibration amplitudes as low as 1.1 Å are measured. The thermal vibration spectra show fundamental resonances at 80-250 Hz and a signal to noise ratio (SNR) of 23-55 dB. Young’s modulus of glass in ...


On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang 2019 University of Nebraska-Lincoln

On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang

Mechanical & Materials Engineering Faculty Publications

We previously reported the finding of a linear correlation between the change of energy dissipation (ΔD) of adhered cells measured with the quartz crystal microbalance with dissipation monitoring (QCM-D) and the level of focal adhesions of the cells. To account for this correlation, we have developed a theoretical framework for assessing the ΔD-response of adhered cells. We rationalized that the mechanical energy of an oscillating QCM-D sensor coupled with a cell monolayer is dissipated through three main processes: the interfacial friction through the dynamic restructuring (formation and rupture) of cell-extracellular matrix (ECM) bonds, the interfacial viscous damping by the liquid ...


Observations Of Shear Stress Effects On Staphylococcus Aureus Biofilm Formation, Erica Sherman, Kenneth W. Bayles, Derek Moormeir, Jennifer Endres, Timothy Wei 2019 University of Nebraska - Lincoln

Observations Of Shear Stress Effects On Staphylococcus Aureus Biofilm Formation, Erica Sherman, Kenneth W. Bayles, Derek Moormeir, Jennifer Endres, Timothy Wei

Mechanical & Materials Engineering Faculty Publications

Staphylococcus aureus bacteria form biofilms and distinctive microcolony or “tower” structures that facilitate their ability to tolerate antibiotic treatment and to spread within the human body. The formation of microcolonies, which break off, get carried downstream, and serve to initiate biofilms in other parts of the body, is of particular interest here. It is known that flow conditions play a role in the development, dispersion, and propagation of biofilms in general. The influence of flow on microcolony formation and, ultimately, what factors lead to microcolony development are, however, not well understood. The hypothesis being examined is that microcolony structures form ...


Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy 2019 University of Nebraska- Lincoln

Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy

Mechanical & Materials Engineering Faculty Publications

Additive manufacturing (AM) of metals often results in parts with unfavorable mechanical properties. Laser peening (LP) is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material. This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis. The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process ...


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan 2019 Southern Methodist University

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and ...


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li 2019 The University of Western Ontario

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis ...


Group Iv Environmentally Benign, Inexpensive Semiconductor Nanomaterials For Solar Cells, Lisa Je 2019 Dartmouth College

Group Iv Environmentally Benign, Inexpensive Semiconductor Nanomaterials For Solar Cells, Lisa Je

ENGS 86 Independent Projects (AB Students)

Modern solar cells are composed of silicon, cadmium tellurium, and copper indium gallium diselenide. While these materials are efficient, elements such as cadmium and indium are rare and expensive. To make this renewable energy source more inexpensive and sustainable, the Liu Optics lab is substituting expensive rare earth metals for more commonly found transition state metals. Work has been done to replace the solar cell layers composed of cadmium and gallium to replace them with glass, silicon, and/or thin films. Common metals such as germanium and tin are investigated and characterized to provide a platform for solar cell components.


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin 2019 Union College - Schenectady, NY

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites ...


Electronic Transport Behavior Of Adatom- And Nanoparticle-Decorated Graphene, Jamie Anne Elias 2019 Washington University in St. Louis

Electronic Transport Behavior Of Adatom- And Nanoparticle-Decorated Graphene, Jamie Anne Elias

Arts & Sciences Electronic Theses and Dissertations

To induce a non-negligible spin-orbit coupling in monolayer graphene, for the purposes of realizing the Kane-Mele Hamiltonian, transition metal adatoms have been deposited in dilute amounts by thermal evaporation in situ while holding the device temperature near 4K. Electronic transport studies including measurements such as gate voltage dependent conductivity and mobility, weak localization, high field magnetoresistance (Shubnikov de Haas oscillations), quantum Hall, and nonlocal voltage were performed at low temperature before and after sequential evaporations. Studies of tungsten adatoms are consistent with literature regarding other metal adatoms on graphene but were unsuccessful in producing a spin-orbit signature, at least partially ...


Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin 2019 Washington University in St. Louis

Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin

Engineering and Applied Science Theses & Dissertations

Abstract of the Dissertation

Defect Chemistry and Ion Intercalation During the Growth and Solid-State Transformation of Metal Halide Nanocrystals

Semiconductor metal halides as light-sensitive materials have applications in multiple areas, such as photographic film, antibacterial agents and photocatalysts. One focus of this dissertation is to achieve novel morphologies of ternary silver bromoiodide (AgBr1-xIx, 0

For the silver halide system, we demonstrate that the anion composition of AgBr1-xIx nanocrystals determines their shape through the introduction of twin defects as the nanocrystals are made more iodide-rich. AgBr1-xIx nanocrystals grow as single-phase, solid solutions with the rock salt crystal structure for anions compositions ...


Wearable Devices For Single-Cell Sensing And Transfection, Lingqian Chang, Yu-Chieh Wang, Faheem Ershad, Ruiguo Yang, Cunjiang Yu, Yubo Fan 2019 Beihang University, Beijing

Wearable Devices For Single-Cell Sensing And Transfection, Lingqian Chang, Yu-Chieh Wang, Faheem Ershad, Ruiguo Yang, Cunjiang Yu, Yubo Fan

Mechanical & Materials Engineering Faculty Publications

Wearable healthcare devices are mainly used for biosensing and transdermal delivery. Recent advances in wearable biosensors allow for long-term and real-time monitoring of physiological conditions at a cellular resolution. Transdermal drug delivery systems have been further scaled down, enabling wide selections of cargo, from natural molecules (e.g., insulin and glucose) to bioengineered molecules (e.g., nanoparticles). Some emerging nanopatches show promise for precise single-cell gene transfection in vivo and have advantages over conventional tools in terms of delivery efficiency, safety, and controllability of delivered dose. In this review, we discuss recent technical advances in wearable micro/nano devices with ...


Liquid Metal-Elastomer Soft Composites With Independently Controllable And Highly Tunable Droplet Size And Volume Loading, Ravi Tutika, Steven Kmiec, A. B. M. Tahidul Haque, Steve W. Martin, Michael D. Bartlett 2019 Iowa State University

Liquid Metal-Elastomer Soft Composites With Independently Controllable And Highly Tunable Droplet Size And Volume Loading, Ravi Tutika, Steven Kmiec, A. B. M. Tahidul Haque, Steve W. Martin, Michael D. Bartlett

Michael Bartlett

Soft composites are critical for soft and flexible materials in energy harvesting, actuators, and multifunctional devices. One emerging approach to create multifunctional composites is through the incorporation of liquid metal (LM) droplets such as eutectic gallium indium (EGaIn) in highly deformable elastomers. The microstructure of such systems is critical to their performance, however, current materials lack control of particle size at diverse volume loadings. Here, we present a fabrication approach to create liquid metal-elastomer composites with independently controllable and highly tunable droplet size (100 nm ≦ D ≦ 80 μm) and volume loading (0 ≦ φ ≦ 80%). This is achieved through a combination ...


Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr. 2019 Linfield College

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr.

Senior Theses

Properties of several working magnetic coupled rotors have been measured and their performance compared to theoretical models. Axial magnetic couplers allow rotors to work within harsh environments, without the need for seals, proper alignment, or overload protection on a motor. The influence of geometrical parameters, such as distance from the center of the rotors, polarity arrangement, and the number of dipole pairs were experimentally tested. These results can be used to improve rotor designs, to increase strength and efficiency.


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller 2019 University of Arkansas, Fayetteville

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and ...


Influence Of Metal Additives On Microstructure And Properties Of Amorphous Metal–Sioc Composites, Kaisheng Ming, Qing Su, Chao Gu, Dongyue Xie, Yongqiang Wang, Michael Nastasi, Jian Wang 2019 University of Nebraska-Lincoln

Influence Of Metal Additives On Microstructure And Properties Of Amorphous Metal–Sioc Composites, Kaisheng Ming, Qing Su, Chao Gu, Dongyue Xie, Yongqiang Wang, Michael Nastasi, Jian Wang

Mechanical & Materials Engineering Faculty Publications

Strong, ductile, and irradiation-tolerant structural materials are in urgent demand for improving the safety and efficiency of advanced nuclear reactors. Amorphous ceramics could be promising candidates for high irradiation tolerance due to thermal stability and lack of crystal defects. However, they are very brittle due to plastic flow instability. Here, we realized enhanced plasticity of amorphous ceramics through compositional and microstructural engineering. Two metal–amorphous ceramic composites, Fe-SiOC and Cu-SiOC, were fabricated by magnetron sputtering. Iron atoms are preferred to form uniformly distributed nano-sized Fe-rich amorphous clusters, while copper atoms grow non-uniformly distributed nano-crystalline Cu particles. The Fe-SiOC composite exhibits ...


Digital Commons powered by bepress