Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Fabrication Commons

Open Access. Powered by Scholars. Published by Universities.®

380 Full-Text Articles 673 Authors 97,436 Downloads 47 Institutions

All Articles in Nanotechnology Fabrication

Faceted Search

380 full-text articles. Page 4 of 18.

A Finite Element Approach To Self-Consistent Field Theory Calculations Of Multiblock Polymers, David M. Ackerman, Kris Delaney, Glenn H. Fredrickson, Baskar Ganapathysubramanian 2017 Iowa State University

A Finite Element Approach To Self-Consistent Field Theory Calculations Of Multiblock Polymers, David M. Ackerman, Kris Delaney, Glenn H. Fredrickson, Baskar Ganapathysubramanian

Mechanical Engineering Publications

Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium ...


Coherent/Incoherent Magnetization Dynamics Of Nanomagnetic Devices For Ultra-Low Energy Computing, Md Mamun Al-Rashid 2017 Virginia Commonwealth University

Coherent/Incoherent Magnetization Dynamics Of Nanomagnetic Devices For Ultra-Low Energy Computing, Md Mamun Al-Rashid

Theses and Dissertations

Nanomagnetic computing devices are inherently nonvolatile and show unique transfer characteristics while their switching energy requirements are on par, if not better than state of the art CMOS based devices. These characteristics make them very attractive for both Boolean and non-Boolean computing applications. Among different strategies employed to switch nanomagnetic computing devices e.g. magnetic field, spin transfer torque, spin orbit torque etc., strain induced switching has been shown to be among the most energy efficient. Strain switched nanomagnetic devices are also amenable for non-Boolean computing applications. Such strain mediated magnetization switching, termed here as “Straintronics”, is implemented by switching ...


Augmenting Mask-Based Lithography With Direct Laser Writing To Increase Resolution And Speed, Miles Patrick Lim 2017 Bard College

Augmenting Mask-Based Lithography With Direct Laser Writing To Increase Resolution And Speed, Miles Patrick Lim

Senior Projects Fall 2017

We present combined direct-laser-writing and UV Lithography in SU-8F and S1813 as a fast and flexible lithographic technique for the prototyping of functional polymer devices and pattern transfer applications. Direct laser writing (DLW), which is performed by focusing a laser through a microscope objective, is a useful alternative method for patterning photoresists with sub-micron resolution. DLW however, can be time consuming if the pattern density is high since it is a serial technique. Typically, dense patterns are made using conventional mask-based UV lithography, but these masks can be quite expensive if the resolution is high and the mask cannot be ...


Application Of Waterproof Breathable Fabric In Thermal Protective Clothing Exposed To Hot Water And Steam, Y. Su, Rui Li, Guowen Song, J. Li 2017 Iowa State University

Application Of Waterproof Breathable Fabric In Thermal Protective Clothing Exposed To Hot Water And Steam, Y. Su, Rui Li, Guowen Song, J. Li

Apparel, Events and Hospitality Management Publications

A hot water and steam tester was used to examine thermal protective performance of waterproof and breathable fabric against hot water and steam hazards. Time to cause skin burn and thermal energy absorbed by skin during exposure and cooling phases was employed to characterize the effect of configuration, placing order and properties of waterproof and breathable fabric on the thermal protective performance. The difference of thermal protective performance due to hot water and steam hazards was discussed. The result showed that the configuration of waterproof and breathable fabric presented a significant effect on the thermal protective performance of single- and ...


Optical Spectroscopy Of Wide Bandgap Semiconductor Heterostructures And Group-Iv Alloy Quantum Dots, Tanner A. Nakagawara 2017 Virginia Commonwealth University

Optical Spectroscopy Of Wide Bandgap Semiconductor Heterostructures And Group-Iv Alloy Quantum Dots, Tanner A. Nakagawara

Theses and Dissertations

Efficient and robust blue InGaN multiple quantum well (MQW) light emitters have become ubiquitous; however, they still have unattained theoretical potential. It is widely accepted that “localization” of carriers due to indium fluctuations theoretically enhance their efficiency by moderating defect-associated nonradiative recombination. To help develop a complete understanding of localization effects on carrier dynamics, this thesis explores degree of localization in InGaN MQWs and its dependence on well thickness and number of wells, through temperature and power dependent photoluminescence measurements. Additionally, silicon-compatible, nontoxic, colloidally synthesizable 2-5 nm Ge1-xSnx alloy quantum-dots (QDs) are explored for potential visible to ...


Design Automation For Carbon Nanotube Circuits Considering Performance And Security Optimization, Lin Liu 2017 Michigan Technological University

Design Automation For Carbon Nanotube Circuits Considering Performance And Security Optimization, Lin Liu

Dissertations, Master's Theses and Master's Reports

As prevailing copper interconnect technology advances to its fundamental physical limit, interconnect delay due to ever-increasing wire resistivity has greatly limited the circuit miniaturization. Carbon nanotube (CNT) interconnects have emerged as promising replacement materials for copper interconnects due to their superior conductivity. Buffer insertion for CNT interconnects is capable of improving circuit timing of signal nets with limited buffer deployment. However, due to the imperfection of fabricating long straight CNT, there exist significant unidimensional-spatially correlated variations on the critical CNT geometric parameters such as the diameter and density, which will affect the circuit performance.

This dissertation develops a novel timing ...


Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat 2017 University of Massachusetts Amherst

Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat

Masters Theses

Hardware implementations of artificial neural networks (ANNs) have become feasible due to the advent of persistent 2-terminal devices such as memristor, phase change memory, MTJs, etc. Hybrid memristor crossbar/CMOS systems have been studied extensively and demonstrated experimentally. In these circuits, memristors located at each cross point in a crossbar are, however, stacked on top of CMOS circuits using back end of line processing (BOEL), limiting scaling. Each neuron’s functionality is spread across layers of CMOS and memristor crossbar and thus cannot support the required connectivity to implement large-scale multi-layered ANNs.

This work proposes a new fine-grained 3D integrated ...


Low-Temperature Fabrication Process For Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors, William Paul Clavijo 2017 Virginia Commonwealth University

Low-Temperature Fabrication Process For Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors, William Paul Clavijo

Theses and Dissertations

This work presents a new low-temperature fabrication process of metal oxide nanostructures that allows high-aspect ratio zinc oxide (ZnO) and titanium dioxide (TiO2) nanowires and nanotubes to be readily integrated with microelectronic devices for sensor applications. This process relies on a new method of forming a close-packed array of self-assembled high-aspect-ratio nanopores in an anodized aluminum oxide (AAO) template in a thin (2.5 µm) aluminum film deposited on a silicon and lithium niobate substrate (LiNbO3). This technique is in sharp contrast to traditional free-standing thick film methods and the use of an integrated thin aluminum film greatly ...


Tailoring Nanoscale Morphology Of Polymer: Fullerene Blends Using Electrostatic Field, Moneim Elshobaki, Ryan S. Gebhardt, John Carr, William Lindemann, Wenjie Wang, Eric Grieser, Swaminathan Venkatesan, Evan Ngo, Ujjal Bhattacharjee, Joseph Strzalka, Zhang Jiang, Qiquan Qiao, Jacob W. Petrich, David Vaknin, Sumit Chaudhary 2017 Mansoura University

Tailoring Nanoscale Morphology Of Polymer: Fullerene Blends Using Electrostatic Field, Moneim Elshobaki, Ryan S. Gebhardt, John Carr, William Lindemann, Wenjie Wang, Eric Grieser, Swaminathan Venkatesan, Evan Ngo, Ujjal Bhattacharjee, Joseph Strzalka, Zhang Jiang, Qiquan Qiao, Jacob W. Petrich, David Vaknin, Sumit Chaudhary

Chemistry Publications

To tailor the nanomorphology in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) bulk heterojunction (BHJ). In addition to control; wet P3HT:PC60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions—horizontal (H), tilted (T), and vertical (V)—relative to the plane of the substrate. Surface and bulk characterizations of the field-treated BHJs affirmed that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following the E-field. Using E-field treatment ...


Rapid And Label-Free Detection Of Interferon Gamma Via An Electrochemical Aptasensor Comprising A Ternary Surface Monolayer On A Gold Interdigitated Electrode Array, Shaowei Ding, Curtis L. Mosher, Xian Y. Lee, Suprem R. Das, Allison A. Cargill, Xiaohui Tang, Bolin Chen, Eric S. McLamore, Carmen Gomes, Jesse M. Hostetter, Jonathan C. Claussen 2017 Iowa State University

Rapid And Label-Free Detection Of Interferon Gamma Via An Electrochemical Aptasensor Comprising A Ternary Surface Monolayer On A Gold Interdigitated Electrode Array, Shaowei Ding, Curtis L. Mosher, Xian Y. Lee, Suprem R. Das, Allison A. Cargill, Xiaohui Tang, Bolin Chen, Eric S. Mclamore, Carmen Gomes, Jesse M. Hostetter, Jonathan C. Claussen

Mechanical Engineering Publications

A label-free electrochemical impedance spectroscopy (EIS) aptasensor for rapid detection (<35 >min) of interferon-gamma (IFN-γ) was fabricated by immobilizing a RNA aptamer capture probe (ACP), selective to IFN-γ, on a gold interdigitated electrode array (Au IDE). The ACP was modified with a thiol group at the 5′ terminal end and subsequently co-immobilized with 1,6-hexanedithiol (HDT) and 6-mercapto-1-hexanolphosphate (MCH) to the gold surface through thiol–gold interactions. This ACP/HDT-MCH ternary surface monolayer facilitates efficient hybridization with IFN-γ and displays high resistance to nonspecific adsorption of nontarget proteins [i.e., fetal bovine serum (FBS) and bovine serum albumin (BSA)]. The Au ...


Quantifying Gauche Defects And Phase Evolution In Self-Assembled Monolayers Through Sessile Drops, Jiahao Chen, Boyce Chang, Stephanie Oyola-Reynoso, Zhengjia Wang, Martin M. Thuo 2017 Iowa State University

Quantifying Gauche Defects And Phase Evolution In Self-Assembled Monolayers Through Sessile Drops, Jiahao Chen, Boyce Chang, Stephanie Oyola-Reynoso, Zhengjia Wang, Martin M. Thuo

Materials Science and Engineering Publications

Self-assembled monolayers (SAMs) are widely used in surface modifications, specifically in tuning the surface chemistry of materials. The structure and properties of SAMs have been extensively studied often with sophisticated tools, even for the simplest n-alkanethiolate SAMs. In SAMs, especially in linear n-alkanethiolates, the properties are dependent on the chain length, which is best manifested in the so-called odd–even effect, a simple yet not fully understood phenomenon. One main challenge is fully delineating the origin of length-dependent properties, which can be due to the structure (ideal SAMs), defect evolution, or substrate-molecule effects. This study demonstrates that utilizing ...


Nanostructured Morphologies In Glassy Polymer Networks, Brian Greenhoe 2016 University of Southern Mississippi

Nanostructured Morphologies In Glassy Polymer Networks, Brian Greenhoe

Dissertations

The body of this work describes a novel approach for the dispersion of multi-walled carbon nanotubes in a high Tg epoxy prepolymer matrix using a twin screw high-shear continuous reactor. The method demonstrated improves on previous dispersion methods in several ways. It offers increased efficiency through excellent heat transfer, while being solvent-less, scale-able, and tailorable to drive dispersion states to judiciously chosen dispersion states. Furthermore, it was shown that dispersion state and agglomerate morphology can be directed, in several ways, through processing conditions and also by controlling the matrix viscosity profile through cure. Broadband dielectric spectroscopy, optical hot-stage microscopy ...


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox 2016 University of Maine

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external ...


Strategies And Techniques For Fabricating Mems Bistable Thermal Actuators., Dilan Ratnayake 2016 University of Louisville

Strategies And Techniques For Fabricating Mems Bistable Thermal Actuators., Dilan Ratnayake

Electronic Theses and Dissertations

Bistable elements are beginning to appear in the field of MEMS as they allow engineers to design sensors and actuators which require no electrical power and possess mechanical memory. This research focuses on the development of novel strategies and techniques for fabricating MEMS bistable structures to serve as no electrical power thermal actuators. Two parallel strategies were explored for the design and fabrication of the critical bistable element. Both strategies involved an extensive material study on candidate thin film materials to determine their temperature coefficient of expansion and as-deposited internal stress properties. Materials investigated included titanium tungsten, Invar, silicon nitride ...


Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill 2016 University of Arkansas, Fayetteville

Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill

Theses and Dissertations

Colloidal lead selenide and lead selenide / lead sulfide core/shell nanocrystals were grown using a wet chemical synthesis procedure. Absorbance and photoluminescence measurements were made to verify the quality of the produced nanocrystals. Absorbance spectra were measured at room temperature, while photoluminescence spectra were measured at 77 K. Organic ligands were exchanged for shorter ligands in order to increase the conductivity of the nanocrystals. Absorption and PL spectra for both core and core/shell nanocrystals were compared. Interdigital photodetector devices with varying channel widths were fabricated by depositing gold onto a glass substrate. Lead selenide nanocrystals were deposited onto these ...


Dispersion Of Particles In Liquid Metal Using Contactless Electromagnetic Stirring, Koulis A. Pericleous, Valdis Bojarevics, Georgi S. Djambazov 2016 University of Greenwich

Dispersion Of Particles In Liquid Metal Using Contactless Electromagnetic Stirring, Koulis A. Pericleous, Valdis Bojarevics, Georgi S. Djambazov

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee 2016 University of Puerto Rico, Mayaguez

Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a neurological disorder that typically requires a long-term implantation of a shunt system to manage its symptoms. These shunt systems are notorious for their extremely high failure rate. More than 40% of all implanted shunt systems fail within the first year of implantation. On average, 85% of all hydrocephalus patients with shunt systems undergo at least two shunt-revision surgeries within 10 years of implantation. A large portion of this high failure rate can be attributed to biofouling-related obstructions and infections. Previously, we developed flexible polyimide-based magnetic microactuators to remove obstructions formed on hydrocephalus shunts. To test the long-term ...


Wearable Piezotronic Devices For Heart Rate Monitoring, Adam J. Miller, Wenzhuo Wu Dr. 2016 Purdue University

Wearable Piezotronic Devices For Heart Rate Monitoring, Adam J. Miller, Wenzhuo Wu Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Self-powered multifunctional wearable devices that are capable of human-device interfacing are highly desired. Piezotronic devices utilize piezoelectricity and semiconductor properties to enable devices to have seamless interaction between human and device. One important use for piezotronic devices is for pressure sensing. Pressure sensing devices have been employed in smart skins, biomonitoring, gesture recognition, and many more applications. This study aims to create a flexible piezotronic device, specifically for use in pressure sensing to monitor heart rate. ZnO nanowires are grown on a flexible polymer substrate so that they can be made into wearable devices. A p-n heterojunction is formed by ...


Atomistic Configuration Interaction Simulation Tool For Semiconductor Based Quantum Computing Devices, Jingbo Wu, Archana Tankasala, Jim Fonseca, Rajib Rahman, Gerhard Klimeck 2016 Purdue University

Atomistic Configuration Interaction Simulation Tool For Semiconductor Based Quantum Computing Devices, Jingbo Wu, Archana Tankasala, Jim Fonseca, Rajib Rahman, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

Solid-state devices are promising candidates for quantum computing applications due to obvious advantages in compatibility with semiconductor fabrication technologies and the extremely long coherent times of electron and nuclear spins in these devices. In such devices, electron interactions are crucial for single and two qubit gate operations. Thus it is essential to evaluate these electron-electron interactions accurately for precise qubit control. It is shown that Atomistic Configuration Interaction can be used to accurately determine electron-electron interactions in realistic semiconductor quantum computing devices. In this work, an online simulation tool on Atomistic Configuration Interaction has been implemented and published on nanoHUB ...


Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism In Spiking Neural Networks, Shrihari Sridharan, Gopalakrishnan Srinivasan, Kaushik Roy 2016 Purdue University

Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism In Spiking Neural Networks, Shrihari Sridharan, Gopalakrishnan Srinivasan, Kaushik Roy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Spiking Neural Networks (SNNs) are one of the recent advances in machine learning that aim to further emulate the computations performed in the human brain. The efficiency of such networks stems from the fact that information is encoded as spikes, which is a paradigm shift from the computing model of the traditional neural networks. Spike Timing Dependent Plasticity (STDP), wherein the synaptic weights interconnecting the neurons are modulated based on a pair of pre- and post-synaptic spikes is widely used to achieve synaptic learning. The learning mechanism is extremely sensitive to the parameters governing the neuron dynamics, the extent of ...


Digital Commons powered by bepress