Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

800 Full-Text Articles 911 Authors 644,109 Downloads 67 Institutions

All Articles in Controls and Control Theory

Faceted Search

800 full-text articles. Page 1 of 31.

Design Optimization, Analysis, And Control Of Walking Robots, Wankun Sirichotiyakul 2019 Boise State University

Design Optimization, Analysis, And Control Of Walking Robots, Wankun Sirichotiyakul

Boise State University Theses and Dissertations

Passive dynamic walking refers to the dynamical behavior of mechanical devices that are able to naturally walk down a shallow slope in a stable manner, without using actuation or sensing of any kind. Such devices can attain motions that are remarkably human-like by purely exploiting their natural dynamics. This suggests that passive dynamic walking machines can be used to model and study human locomotion; however, there are two major limitations: they can be difficult to design, and they cannot walk on level ground or uphill without some kind of actuation.

This thesis presents a mechanism design optimization framework that allows ...


Swarm Behavior To Mitigate Rebound In Air Conditioning Demand Response Events, Jason Yasuto Kuwada 2019 Boise State University

Swarm Behavior To Mitigate Rebound In Air Conditioning Demand Response Events, Jason Yasuto Kuwada

Boise State University Theses and Dissertations

Thermostatically Controlled Loads (TCLs) have shown great potential for Demand Response (DR) events. However, it has been commonly seen that DR events using TCLs may cause demand rebound, especially in homogeneous populations. To further explore the potential for DR events, as well as the negative effects, a stability and resilience analysis were performed on multiple populations and verified with agent based modeling simulations.

At the core of this study is an added thermostat criterion created from the combination of a proportional gain and the average compressor operating state of neighboring TCLs. Where DR events in TCLs are commonly controlled by ...


Nonlinear Attitude And Pose Filters With Superior Convergence Properties, Hashim Abdellah Hashim Mohamed 2019 The University of Western Ontario

Nonlinear Attitude And Pose Filters With Superior Convergence Properties, Hashim Abdellah Hashim Mohamed

Electronic Thesis and Dissertation Repository

In this thesis, several deterministic and stochastic attitude filtering solutions on the special orthogonal group SO(3) are proposed. Firstly, the attitude estimation problem is approached on the basis of nonlinear deterministic filters on SO(3) with guaranteed transient and steady-state measures. The second solution to the attitude estimation problem considers nonlinear stochastic filters on SO(3) with superior convergence properties with two filters being developed in the sense of Ito, and one in the sense of Stratonovich.

This thesis also presents several deterministic and stochastic pose filtering solutions developed on the special Euclidean group SE(3). The first solution ...


Nonlinear Observer For Visual-Inertial Navigation Using Intermittent Landmark Measurements, Miaomiao Wang 2019 Western University

Nonlinear Observer For Visual-Inertial Navigation Using Intermittent Landmark Measurements, Miaomiao Wang

Western Research Forum

The development of reliable orientation, position and linear velocity estimation algorithms for the 3D visual-inertial navigation system (VINS) is instrumental in many applications, such as autonomous underwater vehicles (AUVs), and unmanned aerial vehicles (UAVs). It is extremely important when the global position system (GPS) is not available in GPS-denied environments. Recently, observers design for VINS using landmark position measurements from Kinect sensors or stereo cameras has been increasingly investigated in the literature.

The aim of this work is to design a nonlinear observer for VINS under the assumption that landmark position measurements are intermittent. In practice, the landmark measurements are ...


Analysis, Design And Demonstration Of Control Systems Against Insider Attacks In Cyber-Physical Systems, Xirong Ning 2019 The University of Western Ontario

Analysis, Design And Demonstration Of Control Systems Against Insider Attacks In Cyber-Physical Systems, Xirong Ning

Electronic Thesis and Dissertation Repository

This dissertation aims to address the security issues of insider cyber-physical attacks and provide a defense-in-depth attack-resilient control system approach for cyber-physical systems.

Firstly, security analysis for cyber-physical systems is investigated to identify potential risks and potential security enhancements. Vulnerabilities of the system and existing security solutions, including attack prevention, attack detection and attack mitigation strategies are analyzed.

Subsequently, a methodology to analyze and mathematically characterize insider attacks is developed. An attack pattern is introduced to represent key features in an insider cyber-physical attack, which includes attack goals, resources, constraints, modes, as well as probable attack paths. Patterns for such ...


A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim 2019 Louisiana State University and Agricultural and Mechanical College

A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim

LSU Master's Theses

A multi-agent system can be defined as a coordinated network of mobile, physical agents that execute complex tasks beyond their individual capabilities. Observations of biological multi-agent systems in nature reveal that these ``super-organisms” accomplish large scale tasks by leveraging the inherent advantages of a coordinated group. With this in mind, such systems have the potential to positively impact a wide variety of engineering applications (e.g. surveillance, self-driving cars, and mobile sensor networks). The current state of research in the area of multi-agent systems is quickly evolving from the theoretical development of coordination control algorithms and their computer simulations to ...


Underwater Remotely Operated Vehicle Controller With Pid Stability Regulation, Christian E. Aguirre 2019 California Polytechnic State University, San Luis Obispo

Underwater Remotely Operated Vehicle Controller With Pid Stability Regulation, Christian E. Aguirre

Electrical Engineering

The earth’s oceans and rivers remain widely unexplored. Hobbyists and companies across the globe invest money and resources into remotely operated vehicles (ROV) to further expand underwater knowledge. Each ROV includes a controller that operates motors and monitors other crucial system vitals. The ROV Controller project makes the process of designing an ROV simpler and more affordable by providing a multi-purpose programmable controller.

The ROV controller features programmable digital inputs/outputs and analog inputs. The controller processes control signals from analog joysticks, digital signals from a gyroscope and utilizes a MUX to expand the analog input capabilities of the ...


Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur 2019 California Polytechnic State University, San Luis Obispo

Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur

Computer Engineering

Technology and the way that humans interact is becoming more vital and omnipresent with every passing day. However, human interface device designers suffer from the increasingly popular “designed for me or people like me” syndrome. This design philosophy inherently limits accessibility and usability of technology to those like the designer. This places severe limits of usability to those who are not fully able as well as leaves non-traditional human interface devices unexplored. This project set out to explore a previously uncharted human interface device, on an electric skateboard, and compare it send user experience with industry leading human interface devices.


Flight Director Embedded System And Mobile Ios Application, Anthony Epshteyn 2019 California Polytechnic State University, San Luis Obispo

Flight Director Embedded System And Mobile Ios Application, Anthony Epshteyn

Computer Engineering

For my senior project, I was asked to assist an Aerospace Engineering professor with the design of his new glider. He needed to create a flight director-type instrument so that his pilot could get the aircraft’s positional data during flight. This positional data came from a powerful sensor mounted on the fuselage. To interface with the sensor, I created an embedded system comprised of a ESP32 micro-controller communicating with the sensor via UART/RS-232. The micro-controller was mounted on a breadboard and connected to the sensor via jumper wires. The ESP32 featured a Bluetooth chip that allowed for communication ...


Viewpoint Optimization For Autonomous Strawberry Harvesting With Deep Reinforcement Learning, Jonathon J. Sather 2019 California Polytechnic State University, San Luis Obispo

Viewpoint Optimization For Autonomous Strawberry Harvesting With Deep Reinforcement Learning, Jonathon J. Sather

Master's Theses and Project Reports

Autonomous harvesting may provide a viable solution to mounting labor pressures in the United States' strawberry industry. However, due to bottlenecks in machine perception and economic viability, a profitable and commercially adopted strawberry harvesting system remains elusive. In this research, we explore the feasibility of using deep reinforcement learning to overcome these bottlenecks and develop a practical algorithm to address the sub-objective of viewpoint optimization, or the development of a control policy to direct a camera to favorable vantage points for autonomous harvesting. We evaluate the algorithm's performance in a custom, open-source simulated environment and observe affirmative results. Our ...


Design And Control Of Fiber Encapsulation Additive Manufacturing, Matt Saari 2019 Southern Methodist University

Design And Control Of Fiber Encapsulation Additive Manufacturing, Matt Saari

Mechanical Engineering Research Theses and Dissertations

This work presents the design, development, and analysis of the Fiber Encapsulation Additive Manufacturing (FEAM) system developed at the Laboratory for Additive Manufacturing Robotics \& Automation at the Lyle School of Engineering at Southern Methodist University. The innovation introduced by FEAM is the ability to insert a continuous fiber of different material into the flowing extrudate. Correctly positioning the fiber feed inside the extrudate while turning the fiber in arbitrary directions is a critical aspect of the technology. This will allow for the full exploitation of the capabilities of the FEAM technology to produce robotic components that actuate and sense. Several ...


Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust 2019 University of Tennessee, Knoxville

Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust

Chancellor’s Honors Program Projects

No abstract provided.


Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu 2019 Laboratoire des Signaux et Syst`emes (L2S) CentraleSup´elec-CNRS-Universit´e Paris Sud, 3 rue Joliot- Curie 91192 Gif-sur-Yvette cedex, France.

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents a systematic method to analyse the stability of systems with single delay in which the coefficient polynomials of the characteristic equation depend on the delay. Such systems often arise in, for example, life science and engineering systems. A method to analyze such systems was presented by Beretta and Kuang in a 2002 paper, but with some very restrictive assumptions. This work extends their results to the general case with the exception of some degenerate cases. It is found that a much richer behavior is possible when the restrictive assumptions are removed. The interval of interest for the ...


Autonomous Boat Control Software Design Using Model-Based Systems Engineering, Noah Nelson 2019 University of Arkansas, Fayetteville

Autonomous Boat Control Software Design Using Model-Based Systems Engineering, Noah Nelson

Electrical Engineering Undergraduate Honors Theses

While there is considerable buzz about self-driving cars, self-driving boats are actually more fully developed. The Boat Hardware Control Platform Team was tasked with developing a fleet of small autonomous boats that travel to a destination while avoiding obstacles and staying in formation. The author’s specific task was to develop software used by the boats to detect obstacles and plan a route to a destination. This was done using a method inspired by self-driving cars, which shows promise, but is still being tested at the time of writing. The entire project incorporated model-based systems engineering, which proved to be ...


Real-Time Fault Detection And Reconfiguration Of A Three-Phase Electric Motor Drive, Danyal Mohammadi 2019 Boise State University

Real-Time Fault Detection And Reconfiguration Of A Three-Phase Electric Motor Drive, Danyal Mohammadi

Boise State University Theses and Dissertations

Variable-frequency drives (VFDs) are widely used for control of electrical machines such as induction motors (IMs) or permanent-magnet synchronous motors (PMSMs). Similar to other electrical devices, these drives are subject to failure. Several types of faults are associated with VFDs. For instance, faults such as an open-switch fault, a short-circuit switch fault are the two common faults in VFDs. These faults can yield catastrophic consequences if proper remedial action is not taken.

A unique remedial topology for the post-fault period and a new pulse width modulation (PWM) strategy are proposed so that not only the motor drive can continue the ...


Local And Central Controllers For Microgrids, Edgar Ariel Escala Calame 2019 University of Arkansas, Fayetteville

Local And Central Controllers For Microgrids, Edgar Ariel Escala Calame

Theses and Dissertations

The main objective of this thesis is to serve as a guide, so readers are able to learn about microgrids and to design simple controllers for different AC microgrid applications. In addition, this thesis has the objective to provide examples of simulation cases for the hierarchical structure of a basic AC microgrid which can be used as a foundation to build upon, and achieve more complex microgrid structures as well as more sophisticated power-converter control techniques.

To achieve these objectives, the modeling of voltage source converters and control design in the z-domain are presented. Moreover, the implementation and transient analysis ...


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino 2019 Lynchburg College

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Student Scholar Showcase

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades, advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats, and an increasing popularity of self-driving cars. We predicted the motion of an autonomous vehicle using simulations in Python. The simulation models the motion of a small scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as ...


Low Cost Vehicular Autonomy Using Radar And Gps, Nathan Jessurun, Ryan Gordon, Danielle Fredette 2019 Cedarville University

Low Cost Vehicular Autonomy Using Radar And Gps, Nathan Jessurun, Ryan Gordon, Danielle Fredette

The Research and Scholarship Symposium

This presentation describes a subset of the systems devised for this year's autonomous golf cart senior design project. Our goal is to explore the possibilities of low cost autonomy using only radar and GPS for environmental sensing and navigation. Although autonomous and semi-autonomous ground vehicles are a relatively new reality, prototypes have been a subject of engineering research for decades, often utilizing an array of sensors and sensor fusion techniques. State of the art autonomous ground vehicle prototypes typically use a combination of LIDAR and other distance sensors (such as radar or sonar) as well as cameras and GPS ...


Side Channel Anomaly Detection In Industrial Control Systems Using Physical Characteristics Of End Devices, Ryan D. Harris 2019 Air Force Institute of Technology

Side Channel Anomaly Detection In Industrial Control Systems Using Physical Characteristics Of End Devices, Ryan D. Harris

Theses and Dissertations

Industrial Control Systems (ICS) are described by the Department of Homeland Security as systems that are so \vital to the United States that their incapacity or destruction would have a debilitating impact on our physical or economic security." Attacks like Stuxnet show that these systems are vulnerable. The end goal for Stuxnet was to spin centrifuges at a frequency rate outside of normal operation and hide its activity from the ICS operator. This research aims to provide a proof of concept for an anomaly detection system that would be able to detect an attack like Stuxnet by measuring the physical ...


Physical Layer Discrimination Of Electronic Control Units Using Wired Signal Distinct Native Attribute (Ws-Dnda), Rahn M. Lassiter 2019 Air Force Institute of Technology

Physical Layer Discrimination Of Electronic Control Units Using Wired Signal Distinct Native Attribute (Ws-Dnda), Rahn M. Lassiter

Theses and Dissertations

The Controller Area Network (CAN) bus is a communication system used in automobiles to connect the electronic components required for critical vehicle operations. These components are called Electronic Control Units (ECU) and each one exercises one or more functions within the vehicle. ECUs can provide autonomous safety features and increased comfort to drivers but these advancements may come at the expense of vehicle security. Researchers have shown that the CAN bus can be hacked by compromising authorized ECUs or by physically connecting unauthorized devices to the bus. Physical layer (PHY) device fingerprinting has emerged as one of the accepted approaches ...


Digital Commons powered by bepress