Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

187 Full-Text Articles 328 Authors 35,934 Downloads 32 Institutions

All Articles in Membrane Science

Faceted Search

187 full-text articles. Page 1 of 8.

Characterization Of Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes During Ultrafiltration And Hemodialysis, Kristyn Robling 2020 University of Arkansas, Fayetteville

Characterization Of Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes During Ultrafiltration And Hemodialysis, Kristyn Robling

Biomedical Engineering Undergraduate Honors Theses

The ninth leading cause of death in the United States is kidney disease, and hemodialysis is the process most commonly prescribed for treatment. It utilizes a selectively permeable membrane filter to remove toxins such as urea from the blood and retain necessary protein levels. However, traditional filters, such as cellulose triacetate, used during dialysis can be inefficient in terms of separation performance and reduction of fouling. Recent exploration of nanoparticles has resulted in the creation of Oxone Mediated TEMPO-Oxidized Nano Cellulose which has properties that are believed to increase hydrophilicity, increase tensile capacity, decrease membrane resistance and lower fouling, making ...


Influence Of Naoh Concentration On Transfer Process Of Graphene, Francisco Saldana, Chengyu Wen, George Patrick Watson 2019 Singh Center for Nanotechnology

Influence Of Naoh Concentration On Transfer Process Of Graphene, Francisco Saldana, Chengyu Wen, George Patrick Watson

Protocols and Reports

The process of transferring a monolayer of graphene using two different concentrations of sodium hydroxide (NaOH) solution unto a silicon dioxide (SiO2) coated Si chip using electrochemistry was performed. The transfer process is crucial for the delamination of a continuous graphene monolayer film from copper foil. After examining and inspecting the integrity of the graphene monolayer, it was observed that the lower concentration to NaOH led to slower rate of hydrogen bubble generation; this condition was found to be less destructive and yielded a graphene film with fewer visible tears.


Improving The Stability And Monodispersity Of Layered Cesium Lead Iodide Perovskite Thin Films By Tuning Crystallization Dynamics, Atefe Hadi, Bradley J. Ryan, Rainie D. Nelson, Kalyan Santra, Fang-Yi Lin, Eric W. Cochran, Matthew G. Panthani 2019 Iowa State University

Improving The Stability And Monodispersity Of Layered Cesium Lead Iodide Perovskite Thin Films By Tuning Crystallization Dynamics, Atefe Hadi, Bradley J. Ryan, Rainie D. Nelson, Kalyan Santra, Fang-Yi Lin, Eric W. Cochran, Matthew G. Panthani

Matthew Panthani

Assembling halide perovskites into layered structures holds promise for addressing chemical and phase stability challenges; however, several other challenges need to be addressed to create efficient and stable halide perovskite devices. Layered halide perovskites (LHPs) suffer from broad distribution of layer thicknesses and bandgaps within thin films. Reducing polydispersity could substantially improve charge transport within LHP films and the performance of LHP-based solar cells. Herein, we focused on layering α-CsPbI3 ((C4H9NH3)2Csn-1PbnI3n+1) thin films. We found that (C4H9NH3)2Csn-1PbnI3n+1 with nominal layer thicknesses of n = 1, 2, 3, and 4 can be deposited at temperatures as low as ...


Improving The Stability And Monodispersity Of Layered Cesium Lead Iodide Perovskite Thin Films By Tuning Crystallization Dynamics, Atefe Hadi, Bradley J. Ryan, Rainie D. Nelson, Kalyan Santra, Fang-Yi Lin, Eric W. Cochran, Matthew G. Panthani 2019 Iowa State University

Improving The Stability And Monodispersity Of Layered Cesium Lead Iodide Perovskite Thin Films By Tuning Crystallization Dynamics, Atefe Hadi, Bradley J. Ryan, Rainie D. Nelson, Kalyan Santra, Fang-Yi Lin, Eric W. Cochran, Matthew G. Panthani

Eric W. Cochran

Assembling halide perovskites into layered structures holds promise for addressing chemical and phase stability challenges; however, several other challenges need to be addressed to create efficient and stable halide perovskite devices. Layered halide perovskites (LHPs) suffer from broad distribution of layer thicknesses and bandgaps within thin films. Reducing polydispersity could substantially improve charge transport within LHP films and the performance of LHP-based solar cells. Herein, we focused on layering α-CsPbI3 ((C4H9NH3)2Csn-1PbnI3n+1) thin films. We found that (C4H9NH3)2Csn-1PbnI3n+1 with nominal layer thicknesses of n = 1, 2, 3, and 4 can be deposited at temperatures as low as ...


Biomethane Production From Distillery Wastewater, Zachary Christman 2019 University of Nebraska - Lincoln

Biomethane Production From Distillery Wastewater, Zachary Christman

Theses, Dissertations, and Student Research in Agronomy and Horticulture

Distillery wastewater treatment is a great ecological problem, for example, India produces 2.7 billion liters of alcohol that results in 40 billion liters of wastewater. However, this material can be seen as a resource since 11 million cubic meters of biogas at 60% methane could be produced in addition to cleaning the water. The distillery has two options of what to do with the biogas. The first is to use the biogas to fuel the distillery making the production plant more energy efficient and removing some of the need to buy natural gas. The other is to upgrade the ...


Improving The Stability And Monodispersity Of Layered Cesium Lead Iodide Perovskite Thin Films By Tuning Crystallization Dynamics, Atefe Hadi, Bradley J. Ryan, Rainie D. Nelson, Kalyan Santra, Fang-Yi Lin, Eric W. Cochran, Matthew G. Panthani 2019 Iowa State University

Improving The Stability And Monodispersity Of Layered Cesium Lead Iodide Perovskite Thin Films By Tuning Crystallization Dynamics, Atefe Hadi, Bradley J. Ryan, Rainie D. Nelson, Kalyan Santra, Fang-Yi Lin, Eric W. Cochran, Matthew G. Panthani

Chemical and Biological Engineering Publications

Assembling halide perovskites into layered structures holds promise for addressing chemical and phase stability challenges; however, several other challenges need to be addressed to create efficient and stable halide perovskite devices. Layered halide perovskites (LHPs) suffer from broad distribution of layer thicknesses and bandgaps within thin films. Reducing polydispersity could substantially improve charge transport within LHP films and the performance of LHP-based solar cells. Herein, we focused on layering α-CsPbI3 ((C4H9NH3)2Csn-1PbnI3n+1) thin films. We found that (C4H9NH3)2Csn-1PbnI3n+1 with nominal layer thicknesses of n = 1, 2, 3, and 4 can be deposited at temperatures as low as ...


Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling von Fürstenrecht 2019 California Polytechnic State University, San Luis Obispo

Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht

Materials Engineering

In theory single walled carbon nanotubes (SWCNT) will aid in ion rejection due hydrophobicity and smoothness of the SWCNT. An efficient means of water desalination utilizing SWCNT in a membrane seems plausible. A lyotropic liquid crystal (LLC) solution was made with a synthesized polymerizable surfactant methacryloxy ethyl hexadecyl dimethyl ammonium bromide (C16MA) to help with vertical alignment of SWCNT. Due to SWCNT lack of solubility and tendency to agglomerate in water, a dispersion performed using an inert surfactant centrimonium bromide (CTAB) to make sure that the SWCNT were homogeneously dispersed in the solution without altering the hexagonal packing factor of ...


Silver-Based Microbial Check Valve For Spacecraft Potable Water Systems, Jennifer Gaines 2019 University of Arkansas, Fayetteville

Silver-Based Microbial Check Valve For Spacecraft Potable Water Systems, Jennifer Gaines

Chemical Engineering Undergraduate Honors Theses

As human space exploration increases, the development of a more efficient potable water treatment system suited for spacecraft becomes crucial. This Waste-management Education Research Consortium (WERC) challenge was designed to explore the viability of microbial control through the utilization of silver ions as a biocide for possible integration into the Tranquility Node 3 water purification system aboard the International Space Station (ISS). Current systems using iodine risk causing hyperthyroidism from overexposure; however, silver can be safely ingested without this side effect. After researching silver delivery methods including electrochemical ion production, controlled release, or a combination of the two, our team ...


Task 1: Silver-Based Microbial Check Valve For Spacecraft Potable Water Systems, Eric Beitle 2019 University of Arkansas, Fayetteville

Task 1: Silver-Based Microbial Check Valve For Spacecraft Potable Water Systems, Eric Beitle

Chemical Engineering Undergraduate Honors Theses

As human space exploration increases, the development of a more efficient potable water treatment system suited for spacecraft becomes crucial. This Waste-management Education Research Consortium (WERC) challenge was designed to explore the viability of microbial control through the utilization of silver ions as a biocide for possible integration into the Tranquility Node 3 water purification system aboard the International Space Station (ISS). Current systems using iodine risk causing hyperthyroidism from overexposure; however, silver can be safely ingested without this side effect. After researching silver delivery methods including electrochemical ion production, controlled release, or a combination of the two, our team ...


Chemical And Physical Modification Of Thiol-Ene And Epoxy-Amine Networks For Advanced Control Of Gas Transport And Flame Retardant Behavior, Vivek Vasagar 2019 University of Southern Mississippi

Chemical And Physical Modification Of Thiol-Ene And Epoxy-Amine Networks For Advanced Control Of Gas Transport And Flame Retardant Behavior, Vivek Vasagar

Dissertations

Crosslinked polymers are widely used due to its several advantages not limited to high mechanical strength combined with the easy processability. Despite of its popular usage, the fundamental understanding of polymer structure affecting the desired properties is still lacking. This PhD thesis is in two parts, the first part is devoted to the design and developing a basic understanding of structure and chemical composition dependencies of gas transport, whereas in the second part a fundamental relationship between structure to the fire-retardant properties is established.

Membrane based gas separation technique has attracted interest of selective removal of carbon dioxide gas from ...


Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson 2019 Singh Center for Nanotechnology

Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson

Protocols and Reports

Two reactive ion etching (RIE) processes were studied to show the relative etch selectivity between SiO2 and Si using two fluorocarbon gases, CF4 and CHF3. Results show that CHF3 gives better selectivity (16:1) over CF4 (1.2 :1). On the other hand, the etch rate of SiO2 of CF4 is approximately 52.8 nm/min, faster than CHF3 (32.4 nm/min).


Synthesis, Functionalization, And Application Of Nanofiltration And Composite Membranes For Selective Separations, Andrew Steven Colburn 2019 University of Kentucky

Synthesis, Functionalization, And Application Of Nanofiltration And Composite Membranes For Selective Separations, Andrew Steven Colburn

Theses and Dissertations--Chemical and Materials Engineering

Future nanofiltration (NF) membranes used for selective separations of ions and small organic molecules must maintain performance in environments where high concentrations of total dissolved solvents or foulants are present. These challenges can be addressed through the development of composite membranes, as well as the engineering of enhanced surface properties and operating conditions for existing commercial membranes.

In this work, ion transport through commercial thin film composite (TFC) polyamide NF membranes were studied in both lab-prepared salt solutions and industrial wastewater. The dependence of several variables on ion rejection was investigated, including ion radius, ion charge, ionic strength, and temperature ...


Developing A Portable Prototype To Utilize An Electrospun Colorimetric Sensor For The Detection Of Trihalomethanes In Water, Amanda Svensson 2019 The University of Akron

Developing A Portable Prototype To Utilize An Electrospun Colorimetric Sensor For The Detection Of Trihalomethanes In Water, Amanda Svensson

Williams Honors College, Honors Research Projects

Trihalomethane (THM) detection in water is important due to the potential health effects caused by their presence, including increased cancer risk. A cheap, quick, and portable method of identifying THM concentration at the Environmental Protection Agency limit of 80 parts per billion (ppb) will improve detection and water treatment. Electrospinning was used to make nanofiber membranes using a 2.6 wt% polypropylene solution. These membranes were utilized in the Fujiwara reaction, which creates a color change in the presence of THMs, to detect the THM bromoform in water. The color intensity of the reaction was quantified for 250 and 80 ...


Thin-Film Block Copolymers (Bcps) Self-Assembly As Versatile Patterning Scheme For Functional Nanomaterials, Le Zhang 2018 Louisiana State University and Agricultural and Mechanical College

Thin-Film Block Copolymers (Bcps) Self-Assembly As Versatile Patterning Scheme For Functional Nanomaterials, Le Zhang

LSU Master's Theses

Nanopattern generation is required for building various structural entities in every production process that involves nanostructures. Advancing nanopatterning technologies play an important role in developing and broadening the current nanopatterning technologies to meet up with the ever-demanding requirements in the realm of smaller feature sizes, smoother line-edge roughness (LER) and facile pattern transfer in pursuit of faster computer processors, better electrocatalysts and more compact and intelligent sensors, etc. Conventionally, patterning needs are heavily relied on photolithography, a technique that dominate chip-making industry for more than 50 years. However conventional photolithography is bounded by inherent resolution limits and difficult to be ...


Lessons In Membrane Engineering For Octanoic Acid Production From Environmental Escherichia Coli Isolates, Yingxi Chen, Michael Reinhardt, Natalia Neris, Lucas Kerns, Thomas J. Mansell, Laura R. Jarboe 2018 Iowa State University

Lessons In Membrane Engineering For Octanoic Acid Production From Environmental Escherichia Coli Isolates, Yingxi Chen, Michael Reinhardt, Natalia Neris, Lucas Kerns, Thomas J. Mansell, Laura R. Jarboe

Chemical and Biological Engineering Publications

Fermentative production of many attractive biorenewable fuels and chemicals is limited by product toxicity in the form of damage to the microbial cell membrane. Metabolic engineering of the production organism can help mitigate this problem, but there is a need for identification and prioritization of the most effective engineering targets. Here, we use a set of previously characterized environmental Escherichia coli isolates with high tolerance and production of octanoic acid, a model membrane-damaging biorenewable product, as a case study for identifying and prioritizing membrane engineering strategies. This characterization identified differences in the membrane lipid composition, fluidity, integrity, and cell surface ...


On-Chip Studies Of Magnetic Stimulation Effect On Single Neural Cell Viability And Proliferation On Glass And Nanoporous Surfaces, Xiangchen Che, Joseph Boldrey, Xiaojing Zhong, Shalini Unnikandam-Veettil, Ian C. Schneider, David C. Jiles, Long Que 2018 Iowa State University

On-Chip Studies Of Magnetic Stimulation Effect On Single Neural Cell Viability And Proliferation On Glass And Nanoporous Surfaces, Xiangchen Che, Joseph Boldrey, Xiaojing Zhong, Shalini Unnikandam-Veettil, Ian C. Schneider, David C. Jiles, Long Que

Chemical and Biological Engineering Publications

Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique, an FDA-approved treatment method for various neurological disorders such as depressive disorder, Parkinson’s disease, post-traumatic stress disorder, and migraine. However, information concerning the molecular/cellular-level mechanisms of neurons under magnetic simulation (MS), particularly at the single neural cell level, is still lacking, resulting in very little knowledge of the effects of MS on neural cells. In this paper, the effects of MS on the behaviors of neural cell N27 at the single-cell level on coverslip glass substrate and anodic aluminum oxide (AAO) nanoporous substrate are reported for the first time ...


Imaging Characterization Of Current Generating Lipid-Protein Membranes, Joel D. Kamwa 2018 University of Arkansas, Fayetteville

Imaging Characterization Of Current Generating Lipid-Protein Membranes, Joel D. Kamwa

Graduate School Student Works

Imaging Characterization of Current Generating Lipid-protein Membranes


Membrane-Based Separation Processes For Treating High Salinity Produced Waters, Kamyar Sardari 2018 University of Arkansas, Fayetteville

Membrane-Based Separation Processes For Treating High Salinity Produced Waters, Kamyar Sardari

Theses and Dissertations

Produced waters (PW) generated in the oil and gas industry within the United States often contain extreme levels of total dissolved solids (TDS). These high TDS waste streams need to be treated cost-effectively as the costs associated with the current management techniques can exceed 15 USD per barrel of discharged PW. Thermally and osmotically-driven membrane separation technologies can show promising potential for treating high TDS waste streams, as onsite low-grade waste heat may be used for their operation. In this dissertation, the application of membrane distillation (MD), forward osmosis (FO) and a hybrid FO-MD process for treating synthetic and actual ...


Design Of Peptoid-Based Coating To Reduce Biofouling In Gas Exchange Devices, Neda Mahmoudi 2018 University of Arkansas, Fayetteville

Design Of Peptoid-Based Coating To Reduce Biofouling In Gas Exchange Devices, Neda Mahmoudi

Theses and Dissertations

In recent decades, membrane technology has been used commonly in biomedical area. However, membrane fouling is a widespread problem in different applications. One method to minimize fouling is through surface modification of membranes. My research explores a novel polymer to minimize nonspecific protein adsorption in biomedical applications.

It firstly focuses on grafting the electrically neutral NMEG peptoid, containing 2-methoxyethyl side chains, to polysulfone (PSU) membrane via polydopamine. Contact angle measurements indicated that the hydrophilicity of the peptoid-grafted membranes was significantly improved while the pore size and strength of the membranes remained unchanged. The modified membranes showed an improved fouling resistance ...


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn 2018 Korea Science Academy

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate ...


Digital Commons powered by bepress