Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

5,616 Full-Text Articles 6,999 Authors 2,171,447 Downloads 114 Institutions

All Articles in Aerospace Engineering

Faceted Search

5,616 full-text articles. Page 4 of 190.

Thermal Adaptation Of A Vacuum Chamber, Jacob Russell 2019 Western Michigan University

Thermal Adaptation Of A Vacuum Chamber, Jacob Russell

Honors Theses

The process of adapting a preexisting vacuum chamber to perform thermal vacuum testing is a rare process in the testing industry. A closed vacuum system that was designed without thermal capacitance in mind will hinder the development of additional thermal system capabilities and prove difficult from a cost standpoint. Generally, building a thermal vacuum system from scratch will cost on the order of $10,000 to $100,000 depending on the system requirements regarding control and thermal capacitance within the chamber. This project will explore the cost of such an adaptation, attempting to minimize expense, and potentially provide the “Western ...


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino 2019 Lynchburg College

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Student Scholar Showcase

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades, advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats, and an increasing popularity of self-driving cars. We predicted the motion of an autonomous vehicle using simulations in Python. The simulation models the motion of a small scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as ...


Model-Assisted Validation Of A Strain-Based Dense Sensor Network, Jin Yan, Xiaosong Du, Simon Laflamme, Leifur Leifsson, Chao Hu, An Chen 2019 Iowa State University

Model-Assisted Validation Of A Strain-Based Dense Sensor Network, Jin Yan, Xiaosong Du, Simon Laflamme, Leifur Leifsson, Chao Hu, An Chen

Leifur Leifsson

Recent advances in sensing are empowering the deployment of inexpensive dense sensor networks (DSNs) to conduct structural health monitoring (SHM) on large-scale structural and mechanical systems. There is a need to develop methodologies to facilitate the validation of these DSNs. Such methodologies could yield better designs of DSNs, enabling faster and more accurate monitoring of states for enhancing SHM. This paper investigates a model-assisted approach to validate a DSN of strain gauges under uncertainty. First, an approximate physical representation of the system, termed the physics-driven surrogate, is created based on the sensor network configuration. The representation consists of a state-space ...


Model-Assisted Validation Of A Strain-Based Dense Sensor Network, Jin Yan, Xiaosong Du, Simon Laflamme, Leifur Leifsson, Chao Hu, An Chen 2019 Iowa State University

Model-Assisted Validation Of A Strain-Based Dense Sensor Network, Jin Yan, Xiaosong Du, Simon Laflamme, Leifur Leifsson, Chao Hu, An Chen

Simon Laflamme

Recent advances in sensing are empowering the deployment of inexpensive dense sensor networks (DSNs) to conduct structural health monitoring (SHM) on large-scale structural and mechanical systems. There is a need to develop methodologies to facilitate the validation of these DSNs. Such methodologies could yield better designs of DSNs, enabling faster and more accurate monitoring of states for enhancing SHM. This paper investigates a model-assisted approach to validate a DSN of strain gauges under uncertainty. First, an approximate physical representation of the system, termed the physics-driven surrogate, is created based on the sensor network configuration. The representation consists of a state-space ...


Surrogate Modeling Of Ultrasonic Nondestructive Evaluation Simulations, Jacob Siegler, Leifur Leifsson, Robert Grandin, Slawomir Koziel, Adrian Bekasiewicz 2019 Iowa State University

Surrogate Modeling Of Ultrasonic Nondestructive Evaluation Simulations, Jacob Siegler, Leifur Leifsson, Robert Grandin, Slawomir Koziel, Adrian Bekasiewicz

Leifur Leifsson

Ultrasonic testing (UT) is used to detect internal flaws in materials or to characterize material properties. Computational simulations are an important part of the UT process. Fast models are essential for UT applications such as inverse design or model-assisted probability of detection. This paper presents investigations of using surrogate modeling techniques to create fast approximate models of UT simulator responses. In particular, we propose to use data-driven surrogate modeling techniques (kriging interpolation), and physics-based surrogate modeling techniques (space mapping), as well a mixture of the two approaches. These techniques are investigated for two cases involving UT simulations of metal components ...


Building And Integrating An Information Security Trustworthiness Framework For Aviation Systems, Anna Baron Garcia 2019 Embry-Riddle Aeronautical University

Building And Integrating An Information Security Trustworthiness Framework For Aviation Systems, Anna Baron Garcia

Dissertations and Theses

The aviation infrastructure is broadly composed of aircraft, air traffic control systems, airports and public airfields. Much attention has been given to physical security along the years this industry has been expanding; and now, in the new age of interconnection devices, a growing concern about cybersecurity has risen.

The never-ending improvement of new digital technology has given birth to a new generation of electronic-enabled (e-enabled) aircraft that implement a remarkable amount of new technologies such as IP-enabled networks, COTS (commercial off-the- shelf) components, wireless connectivity, and global positioning systems (GPSs). For example, aircraft manufacturers are building wireless systems to reduce ...


Scale Interactions Within A Perturbed Plane Wall Jet, Shibani Bhatt 2019 Embry-Riddle Aeronautical University

Scale Interactions Within A Perturbed Plane Wall Jet, Shibani Bhatt

Dissertations and Theses

The current work focuses on exploiting this behavior to manipulate wall turbulence by targeting the large-scales of the flow. In wall turbulence the large-scales of the flow interact with the smaller scales in a non-linear manner including through a process of amplitude and frequency modulation. A plane wall jet (PWJ) is chosen as the model flow field for this work as its unique geometry allows for the controlled introduction of large-scale perturbations through acoustic forcing. The corresponding interactions because of forcing are characterized using single hot-wire measurements. The nearwall response of the PWJ over a range of large-scale forcing showed ...


Geometric Effects Of Thermal Barrier Coating Damage On Turbine Blade Temperatures, Shane Colon 2019 Embry-Riddle Aeronautical University

Geometric Effects Of Thermal Barrier Coating Damage On Turbine Blade Temperatures, Shane Colon

Dissertations and Theses

Thermal barrier coatings (TBC) found on turbine blades are a key element in the performance and reliability of modern gas turbines. During the life of the turbine components, the TBC surface may be damaged due to manufacturing imperfections, handling damage, service spalling, or service impact damage, producing chips in the coating. While a chip in the TBC coating is expected to cause an increase in airfoil temperature, it is unknown to what degree the blade will be affected and what parameters of the chip shape affect this result. The goal of this preliminary study is to identify the major driving ...


Non-Linear Bending Analysis Of Functionally Graded Beams With Spring Constraints And Thermal Effects, Swetha Suresh 2019 Embry-Riddle Aeronautical University

Non-Linear Bending Analysis Of Functionally Graded Beams With Spring Constraints And Thermal Effects, Swetha Suresh

Dissertations and Theses

No abstract provided.


Uncover The Power Of Multipath : Detecting Nlos Drones Using Low-Cost Wifi Devices, Ashok Vardhan Raja 2019 Embry-Riddle Aeronautical University

Uncover The Power Of Multipath : Detecting Nlos Drones Using Low-Cost Wifi Devices, Ashok Vardhan Raja

Dissertations and Theses

In recent years, consumer UAV technology has seen considerable advances. Consumer UAVs have become an ideal vector for privacy invasions due to their affordability, size, maneuverability, and their ability to stream live high-quality video. There is considerable proliferation of drones in both civil and military domains. Hence it is critical to detect invading unmanned aerial vehicles (UAVs) or drones in a timely manner for both security and safeguarding privacy. Currently available solutions like active radar, video or acoustic sensors are very expensive (especially for individuals) and have considerable constraints (e.g., requiring visual line of sight).

Recent research on drone ...


Algorithm For Geodetic Positioning Based On Angle-Of-Arrival Of Automatic Dependent Surveillance-Broadcasts, Richard Allen Gross 2019 Grand Valley State University

Algorithm For Geodetic Positioning Based On Angle-Of-Arrival Of Automatic Dependent Surveillance-Broadcasts, Richard Allen Gross

Masters Theses

This paper develops a non-precision, three-dimensional, geodetic positioning algorithm for airborne vehicles. The algorithm leverages the proliferation of Automatic Dependent Surveillance – Broadcast (ADS-B) equipped aircraft, utilizing them as airborne navigation aids to generate an RF Angle-of-Arrival (AOA) and Angle-of-Elevation (AOE) based geodetic position. The resulting geodetic position can serve as a redundant navigation system for use during locally limited Global Navigation Satellite System (GNSS) availability, be used to validate on-board satellite navigation systems in an effort to detect local spoofing attempts, and be used to validate ADS-B position reports.

The navigation algorithm is an implementation of an Extended Kalman Filter ...


Model Predictive Control Synthesis For The Innovative Control Effector Tailless Fighter Aircraft, Christopher Proctor 2019 Western Michigan University

Model Predictive Control Synthesis For The Innovative Control Effector Tailless Fighter Aircraft, Christopher Proctor

Master's Theses

A nonlinear model predictive control law was developed for the Lockheed Martin Innovative Control Effector tailless fighter aircraft to track way points. In general, aircraft are described by nonlinear dynamics that are dependent on the regime of flight. Additionally strict requirements on state and actuator constraints are common to all aircraft. Tailless aircraft are usually overdetermined systems, meaning solutions to control problems are not unique, and the system is non-affine. The proposed nonlinear control law considers those constraints during run-time, and solves the nonlinear control problem for a range of points within different flight regimes. The control law was developed ...


Control Law Synthesis For Lockheed Martin’S Innovative Control Effectors Aircraft Concept, Cameron James Segard 2019 Western Michigan University

Control Law Synthesis For Lockheed Martin’S Innovative Control Effectors Aircraft Concept, Cameron James Segard

Master's Theses

This thesis documents a conventional and modern flight control system design process carried out on a tailless aircraft Simulink model with innovative control effectors provided by Lockheed Martin. To set scope and design requirements a performance analysis was carried out to categorize the aircraft. Evaluation of open-loop dynamics reveled modal instabilities as well as state and control coupling. Flight condition dependent pole migration mapping reveled large changes in the aircraft’s static stability. Leading to the development of a four channel proportional-integral- derivative (PID) stability and control augmentation system (SCAS) controlling pitch-rate, roll-rate, side-slip angle, and airspeed states. PID gains ...


Design And Manufacture Of An Inertial Cascade Impactor For Industrial Hygiene Purposes, Hector Joel Gortaire 2019 Old Dominion University

Design And Manufacture Of An Inertial Cascade Impactor For Industrial Hygiene Purposes, Hector Joel Gortaire

Mechanical & Aerospace Engineering Theses & Dissertations

Inertial cascade impactors are devices commonly used for industrial hygiene and pharmaceutical studies. Their main purpose is to separate particulate matter suspended in aerosols according to their sizes, which can vary from over 10 µm to 0.5 µm. Their versatility and ease of operation make them suitable for on-site sampling; however, designing them requires a careful consideration of the different geometric parameters that characterize them.

In this thesis, a 5-stage inertial cascade impactor was designed, modelled, constructed, and tested. The main design parameter was the volumetric flow rate, 40 l/min, which was provided by a vacuum pump. By ...


Characterization And Optimization Of A Propeller Test Stand, Colin Bruce Leighton Benjamin 2019 Old Dominion University

Characterization And Optimization Of A Propeller Test Stand, Colin Bruce Leighton Benjamin

Mechanical & Aerospace Engineering Theses & Dissertations

In recent history, there has been a rapid rise in the use of drones, and they are expanding in popularity each year. The widespread use and future capabilities of these unmanned aerial vehicles (UAVs) will call for increased study and classification of propellers to maximize their performance. As a result, it is necessary to have continuity in the development, maximization, and optimization of propeller test stand’s capability to collect accurate and precise measurements. It is of significant advantage to have the capability of accurately characterizing a propeller based on its thrust and torque. In this study, a propeller test ...


An Investigation Of General Criteria For Assessing Space Flight Systems Of Diverse Mission Concept Designs, Cindy L. Daniels 2019 Old Dominion University

An Investigation Of General Criteria For Assessing Space Flight Systems Of Diverse Mission Concept Designs, Cindy L. Daniels

Engineering Management & Systems Engineering Theses & Dissertations

The purpose of this research is to investigate the general criteria for assessing the technical implementation risk factors of proposed space science missions at the mission concept stage. According to the National Aeronautics and Space Administration (NASA) Space Flight Program and Project Management Handbook (NASA, 2012), the mission concept review objectives are “To evaluate the feasibility of the proposed mission concept(s) and its fulfillment of the program's needs and objectives. To determine whether the maturity of the concept and associated planning are sufficient to begin Phase A” (p.33). Experts previously defined two technical risk factors, to assess ...


Model-Assisted Validation Of A Strain-Based Dense Sensor Network, Jin Yan, Xiaosong Du, Simon Laflamme, Leifur Leifsson, Chao Hu, An Chen 2019 Iowa State University

Model-Assisted Validation Of A Strain-Based Dense Sensor Network, Jin Yan, Xiaosong Du, Simon Laflamme, Leifur Leifsson, Chao Hu, An Chen

Civil, Construction and Environmental Engineering Publications

Recent advances in sensing are empowering the deployment of inexpensive dense sensor networks (DSNs) to conduct structural health monitoring (SHM) on large-scale structural and mechanical systems. There is a need to develop methodologies to facilitate the validation of these DSNs. Such methodologies could yield better designs of DSNs, enabling faster and more accurate monitoring of states for enhancing SHM. This paper investigates a model-assisted approach to validate a DSN of strain gauges under uncertainty. First, an approximate physical representation of the system, termed the physics-driven surrogate, is created based on the sensor network configuration. The representation consists of a state-space ...


Incidence Of An Astronaut Not Sealing The Pressure Garment Visor On Reentry, Cameron M. Smith, Trent Tresch 2019 Portland State University

Incidence Of An Astronaut Not Sealing The Pressure Garment Visor On Reentry, Cameron M. Smith, Trent Tresch

Cameron Smith

Audiovisual records of a Project Mercury pilot’s activities during an orbital flight indicate that his visor was left open during reentry and descent to the sea surface, phases of flight during which cabin pressure loss was to be mitigated by suit pressurization; however, the suit could not have been pressurized with the visor open. Thus, for a presently unknown reason, a critical safety step—sealing the visor and making a pressure suit integrity test before reentry—was overlooked in this flight. Later, Space Shuttle flights were carried out with visors unsealed for much of the launch and landing phases ...


Nde In-Process For Metal Parts Fabricated Using Powder Based Additive Manufacturing, Leonard J. Bond, Lucas W. Koester, Hossein Taheri 2019 Iowa State University

Nde In-Process For Metal Parts Fabricated Using Powder Based Additive Manufacturing, Leonard J. Bond, Lucas W. Koester, Hossein Taheri

Aerospace Engineering Publications

Ensuring adequate quality for additive manufactured (AM) materials presents unique metrology challenges to the on-line process measurement and nondestructive evaluation (NDE) communities. AM parts now have complex forms that are not possible using subtractive manufacturing and there are moves for their use in safety criticality components. This paper briefly reviews the status, challenges and metrology opportunities throughout the AM process from powder to finished parts. The primary focus is on new acoustic signatures that have been demonstrated to correlate process parameters with on-line measurement for monitoring and characterization during the build. In-process, quantitative characterization and monitoring of material state is ...


Incidence Of An Astronaut Not Sealing The Pressure Garment Visor On Reentry, Cameron M. Smith, Trent Tresch 2019 Portland State University

Incidence Of An Astronaut Not Sealing The Pressure Garment Visor On Reentry, Cameron M. Smith, Trent Tresch

Journal of Human Performance in Extreme Environments

Audiovisual records of a Project Mercury pilot’s activities during an orbital flight indicate that his visor was left open during reentry and descent to the sea surface, phases of flight during which cabin pressure loss was to be mitigated by suit pressurization; however, the suit could not have been pressurized with the visor open. Thus, for a presently unknown reason, a critical safety step—sealing the visor and making a pressure suit integrity test before reentry—was overlooked in this flight. Later, Space Shuttle flights were carried out with visors unsealed for much of the launch and landing phases ...


Digital Commons powered by bepress