Open Access. Powered by Scholars. Published by Universities.®

Aeronautical Vehicles Commons

Open Access. Powered by Scholars. Published by Universities.®

315 Full-Text Articles 556 Authors 204,409 Downloads 34 Institutions

All Articles in Aeronautical Vehicles

Faceted Search

315 full-text articles. Page 1 of 13.

License To Launch: The Regulatory Future Of Commercial Ballistic Travel, Jacob Weindling 2019 University of Minnesota Law School

License To Launch: The Regulatory Future Of Commercial Ballistic Travel, Jacob Weindling

Minnesota Journal of Law, Science & Technology

No abstract provided.


Advanced Photogrammetric Modeling Of Dranoc Kullas Using Small Unmanned Aircraft Systems, George Gebert, Liam Griffin, Justin Lawlor, Lauren Davis, Kylee Vander Velde, Sami Ali 2019 Embry-Riddle Aeronautical University

Advanced Photogrammetric Modeling Of Dranoc Kullas Using Small Unmanned Aircraft Systems, George Gebert, Liam Griffin, Justin Lawlor, Lauren Davis, Kylee Vander Velde, Sami Ali

Student Works

Small unmanned aircraft systems (sUAS), also known as drones, offer new capabilities for cultural heritage preservation activities. Student researchers from Embry-Riddle Aeronautical University have applied photogrammetric techniques based upon sUAS captured imagery to assist with historical site documentation and cultural heritage preservation in the Republic of Kosovo. Imagery from three locations -- Isniq, Dranoc and Junik -- highlight this work. Student researchers created georectified orthomosaics and 3D virtual objects. At each of these three locations the object of interest was a type of building known as a kulla. These kullas are fortified homes built for protecting large families and are unique to ...


Comparative Analysis Of Small Unmanned Aircraft Systems Operations Manuals, Stephen M. Cigal 2019 Embry-Riddle Aeronautical University

Comparative Analysis Of Small Unmanned Aircraft Systems Operations Manuals, Stephen M. Cigal

Student Works

With over 100,000 remote pilots in the United States, individuals and companies are rapidly incorporating unmanned aircraft system technologies into their everyday life and businesses models. The companies that use these technologies must comply with federal and state regulations in order to maintain a safe environment to operate. These operations must also be accepted by the general public. Since the FAA regulations for small unmanned aircraft systems (sUAS) went into effect in 2016, supplemented by additional state and/or local requirements, some companies have generated operations manuals (OM) to ensure consistent, safe flight that meets these requirements. By analyzing ...


Unmanned Aircraft Systems In The Cyber Domain, Randall K. Nichols, Hans C. Mumm, Wayne D. Lonstein, Julie J.C.H. Ryan, Candice Carter, John-Paul Hood 2019 Kansas State University

Unmanned Aircraft Systems In The Cyber Domain, Randall K. Nichols, Hans C. Mumm, Wayne D. Lonstein, Julie J.C.H. Ryan, Candice Carter, John-Paul Hood

NPP eBooks

Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security ...


Propulsion System Testing For A Long-Endurance Solar-Powered Unmanned Aircraft, D. Dantsker, Robert Deters, Marco Caccamo 2019 University of Illinois

Propulsion System Testing For A Long-Endurance Solar-Powered Unmanned Aircraft, D. Dantsker, Robert Deters, Marco Caccamo

Publications

The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e. propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. In order to determine ...


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin 2019 Union College - Schenectady, NY

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites ...


A Technology Survey Of Emergency Recovery And Flight Termination Systems For Uas, Richard Stansbury, Wesley Tanis, Timothy Wilson 2019 Embry-Riddle Aeronautical University

A Technology Survey Of Emergency Recovery And Flight Termination Systems For Uas, Richard Stansbury, Wesley Tanis, Timothy Wilson

Richard Stansbury

For safe flight in the National Airspace System (NAS), either under the current interim rules or under anticipated longer-term regulatory guidelines facilitating unmanned aircraft system (UAS) access to the NAS, the UAS must incorporate technologies and flight procedures to ensure that neither people nor property in the air, on the ground, or on or in the water are endangered by the failure of an onboard component, by inappropriate unmanned aircraft (UA) response to pilot commands, or by inadvertent entry by the UA into prohibited airspace. The aircraft must be equipped with emergency recovery (ER) procedures and technologies that ensure that ...


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino 2019 Lynchburg College

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Undergraduate Theses and Capstone Projects

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats and an increasing popularity of self-driving cars. We simulated the motion of an autonomous vehicle using computational models. The simulation models the motion of a small-scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as various biases ...


Task 1: Silver-Based Microbial Check Valve For Spacecraft Potable Water Systems, Eric Beitle 2019 University of Arkansas, Fayetteville

Task 1: Silver-Based Microbial Check Valve For Spacecraft Potable Water Systems, Eric Beitle

Chemical Engineering Undergraduate Honors Theses

As human space exploration increases, the development of a more efficient potable water treatment system suited for spacecraft becomes crucial. This Waste-management Education Research Consortium (WERC) challenge was designed to explore the viability of microbial control through the utilization of silver ions as a biocide for possible integration into the Tranquility Node 3 water purification system aboard the International Space Station (ISS). Current systems using iodine risk causing hyperthyroidism from overexposure; however, silver can be safely ingested without this side effect. After researching silver delivery methods including electrochemical ion production, controlled release, or a combination of the two, our team ...


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino 2019 Lynchburg College

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Student Scholar Showcase

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades, advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats, and an increasing popularity of self-driving cars. We predicted the motion of an autonomous vehicle using simulations in Python. The simulation models the motion of a small scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as ...


High Resolution Low-Bandwidth Real-Time Reconnaissance Using Structure From Motion With Planar Homography Estimation, Christian M.A. Arnold 2019 Air Force Institute of Technology

High Resolution Low-Bandwidth Real-Time Reconnaissance Using Structure From Motion With Planar Homography Estimation, Christian M.A. Arnold

Theses and Dissertations

Aerial real-time surveillance exists in a paradigm balancing the constraints of delivering high quality data and transporting data quickly. Typically, to have more of one, sacrifices must be made to the other. This is true of the environment in which an Unmanned Aerial Vehicle (UAV) operates, where real-time communication may be done through a low-bandwidth satellite connection resulting in low-resolution data, and serves as the primary limiting factor in all intelligence operations. Through the use of efficient computer vision techniques, we propose a new Structure from Motion (SfM) method capable of compressing high-resolution data, and delivering that data in real-time ...


Monocular Visual Odometry For Fixed-Wing Small Unmanned Aircraft Systems, Kyung M. Kim 2019 Air Force Institute of Technology

Monocular Visual Odometry For Fixed-Wing Small Unmanned Aircraft Systems, Kyung M. Kim

Theses and Dissertations

The popularity of small unmanned aircraft systems (SUAS) has exploded in recent years and seen increasing use in both commercial and military sectors. A key interest area for the military is to develop autonomous capabilities for these systems, of which navigation is a fundamental problem. Current navigation solutions suffer from a heavy reliance on a Global Positioning System (GPS). This dependency presents a significant limitation for military applications since many operations are conducted in environments where GPS signals are degraded or actively denied. Therefore, alternative navigation solutions without GPS must be developed and visual methods are one of the most ...


Active Control Of A Morphing Wing Aircraft And Failure Analysis For System Reliability, Madison J. Montgomery 2019 Air Force Institute of Technology

Active Control Of A Morphing Wing Aircraft And Failure Analysis For System Reliability, Madison J. Montgomery

Theses and Dissertations

A morphing wing aircraft has the ability to increase the efficiency of an aircraft by better optimizing lift and drag characteristics during a flight. A morphing wing UAV was designed and constructed by AFRL/RQVS and required a means of control and method of characterizing the performance of the aircraft through flight testing. This research presents the design and construction of a control system capable of adjusting the morphing wing shape based on pilot commands and current flight status. The control system was tested and improved following a flight test crash utilizing failure mode analysis.


Comprehensive Study Of Study Of Optimal Synergetic Skip Entries With Dynamic Thrust Vectoring Control, Jeremiah M. Webb 2019 Air Force Institute of Technology

Comprehensive Study Of Study Of Optimal Synergetic Skip Entries With Dynamic Thrust Vectoring Control, Jeremiah M. Webb

Theses and Dissertations

The atmospheric skip entry has been studied since London's presentation in 1962 describing a more fuel efficient means of altering the orbital inclination of satellites. Since London, research over the decades since has traversed many aspects of this field with varying degrees of success. The present research employs the use of modern optimal control software, complex dynamics with minor simplifications, and thrust vectoring to re-approach the aerocruise atmospheric skip entry. Using the aerodynamics of the X-34, the aerocruise problem is first compared to the un-powered aeroglide where it is shown that the aerocruise is capable of increasing the inclination ...


Improving The Delivered Specific Impulse Of Composite Rocket Propellant Through Alteration Of Chemical Composition: Methodology And Parameters For Characterization Of Propellant And Validation Of Simulation Software Common To The Amateur Rocketry Community, Isaac O'Brien, Austin Ryan 2019 The University of Akron

Improving The Delivered Specific Impulse Of Composite Rocket Propellant Through Alteration Of Chemical Composition: Methodology And Parameters For Characterization Of Propellant And Validation Of Simulation Software Common To The Amateur Rocketry Community, Isaac O'Brien, Austin Ryan

Williams Honors College, Honors Research Projects

In this study, two solid composite rocket propellants were designed utilizing ProPEP, a rocket propellant formulation software common in the amateur and hobby rocketry communities. The two propellants were designed to optimize specific impulse relative to a literature propellant designed by 1020 Research Labs. The literature propellant was also tested in order to validate the design of experiment as well as the mixing and testing procedures. All three propellants, which includes the literature propellant RCS-P, and the two novel propellants AKR-P1 and AKR-P2 were characterized with static tests. The results of the static tests provide data on propellant performance and ...


Immunity-Based Framework For Autonomous Flight In Gps-Challenged Environment, Mohanad Al Nuaimi 2019 West Virginia University

Immunity-Based Framework For Autonomous Flight In Gps-Challenged Environment, Mohanad Al Nuaimi

Graduate Theses, Dissertations, and Problem Reports

In this research, the artificial immune system (AIS) paradigm is used for the development of a conceptual framework for autonomous flight when vehicle position and velocity are not available from direct sources such as the global navigation satellite systems or external landmarks and systems. The AIS is expected to provide corrections of velocity and position estimations that are only based on the outputs of onboard inertial measurement units (IMU). The AIS comprises sets of artificial memory cells that simulate the function of memory T- and B-cells in the biological immune system of vertebrates. The innate immune system uses information about ...


Fe Modeling Methodology For Load Analysis And Preliminary Sizing Of Aircraft Wing Structure, Jun Hwan Jang, Sang Ho Ahn 2019 Defense Acquisition Program Administration

Fe Modeling Methodology For Load Analysis And Preliminary Sizing Of Aircraft Wing Structure, Jun Hwan Jang, Sang Ho Ahn

International Journal of Aviation, Aeronautics, and Aerospace

It is a critical part at the basic design phase of aircraft structural design to build a finite element model and it will have a direct impact on time and cost for airframe structure development. In addition, the objective of finite element model will be varied depending on each design review phase and the modelling methodology varied accordingly. In order to build an effective and economic finite element model, it is required to develop adequate level of modelling methodology based on each design phase and its objectives. Therefore, in this paper, the finite element modeling methodology was presented for internal ...


Comparison Of Fixed-Wing Unmanned Aircraft Systems (Uas) For Agriculture Monitoring, Joseph Cerreta, Kristine M. Kiernan 2019 Embry-Riddle Aeronautical University

Comparison Of Fixed-Wing Unmanned Aircraft Systems (Uas) For Agriculture Monitoring, Joseph Cerreta, Kristine M. Kiernan

International Journal of Aviation, Aeronautics, and Aerospace

Florida citrus growers need inexpensive methods to observe citrus plants to detect disease and stress consistently. Health vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) collected from Unmanned Aircraft Systems (UAS), can be used to identify variation in plant health. Simple-to-operate UAS may enable growers to determine within-field variation more frequently than with inspections from scouts, providing more frequent knowledge about the crop condition. This research compared two low-cost fixed-wing UAS, a $5,000 Parrot Disco Pro Ag and a $16,690 senseFly eBee, each equipped with a Parrot Sequoia multispectral camera, to determine if there were differences ...


Design And Realization Of An Unmanned Aerial Rotorcraft Vehicle Using Pressurized Inflatable Structure, Nirmal Sadasivan 2019 NSS COLLEGE OF ENGINEERING, PALAKKAD

Design And Realization Of An Unmanned Aerial Rotorcraft Vehicle Using Pressurized Inflatable Structure, Nirmal Sadasivan

International Journal of Aviation, Aeronautics, and Aerospace

Unmanned aerial rotorcraft vehicles have many military, commercial and civil applications. There is a necessity to advance the performance on several ranges of rotorcraft for using these vehicles successfully in the expanded future roles. A lower flight time, noise disturbance and safety issues remain the key obstacles in increasing the efficiency of the rotorcraft for various applications. This work presents the design and realization of a rotorcraft using pressurized inflatable structure filled with lighter than air gas such as helium or hydrogen to provide lift assistance for the vehicle. Two iterative design procedures were developed for designing the vehicle. One ...


In-Flight Wingtip Folding: Inspiration From The Xb-70 Valkyrie, Gaétan X. Dussart, Mudassir Lone, Ciaran O'Rourke, Thomas Wilson 2019 Cranfield University

In-Flight Wingtip Folding: Inspiration From The Xb-70 Valkyrie, Gaétan X. Dussart, Mudassir Lone, Ciaran O'Rourke, Thomas Wilson

International Journal of Aviation, Aeronautics, and Aerospace

Wingip folding can be used to extend aircraft wingspan, allowing designers to take advantage of reduced induced drag whilst respecting ground operational limitations. Such devices can also be used in-flight for a variety of other benefits including load alleviation and flight control. The majority of in-flight folding research takes inspiration in past developments made on the XB-70 Valkyrie, which used the folding devices for stability and lift performance benefits. In this paper, the authors investigate the capabilities of the folding wingtip system and potential scaling to large civil aircraft. Manufacturing details are used to size the actuators whilst the aerodynamic ...


Digital Commons powered by bepress